Assessment of leaching behavior and human bioaccessibility of rare earth elements in typical hospital waste incineration ash in China

Chunfeng Wang , Guanfei Chen , Yanchen Zhu , Dan Yao , Wanfeng Wang , Lianjun Wang

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 5

PDF (817KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 5 DOI: 10.1007/s11783-017-0946-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Assessment of leaching behavior and human bioaccessibility of rare earth elements in typical hospital waste incineration ash in China

Author information +
History +
PDF (817KB)

Abstract

• Leaching behavior and human bioaccessibility of REEs in HWI ashes were assessed.

• LREE leached amounts were higher than those of HREEs via both leaching tests.

• REEs were extracted to the higher level by PBET method compared to leaching test.

• Bioaccessibility results depend commonly on pH value and chelating role.

• Synergetic effects of contaminants in HWI ashes need further investigation.

Leaching behavior and gastrointestinal bioaccessibility of rare earth elements (REEs) from hospital waste incineration (HWI) fly and bottom ash samples collected from Beijing and Nanjing Cities were assessed. In the same ash sample, the leaching concentrations of individual REEs determined by the Toxicity Characteristic Leaching Procedure (TCLP) were higher than those detected by the European standard protocol (EN-type test), thereby suggesting that the low pH value of leaching solution was an important factor influencing the leachability of REE. The REE bioaccessibility results, which were evaluated using the physiologically based extraction test (PBET), indicated that REEs were highly absorbed during gastric phase by dissolution; and subsequently precipitated and/or re-adsorbed in small intestinal phase. The relative amounts of the total REEs extracted by the TCLP method, EN-type test and PBET test were compared. In addition to the pH value of extraction solutions, the chelating role of REEs with organic ligands used in the PBET method was also an important parameter affecting REE adsorption in human body. Additionally, this study showed that REEs were extracted by these methods as concomitants of heavy metals and anions (NO3, F, SO42, and Cl) from HWI ash, which probably caused the remarkably complex toxicity on human body by the exposure pathway.

Graphical abstract

Keywords

Assessment / Rare earth elements / Leaching behavior / Bioaccessibility / Hospital waste

Cite this article

Download citation ▾
Chunfeng Wang, Guanfei Chen, Yanchen Zhu, Dan Yao, Wanfeng Wang, Lianjun Wang. Assessment of leaching behavior and human bioaccessibility of rare earth elements in typical hospital waste incineration ash in China. Front. Environ. Sci. Eng., 2017, 11(6): 5 DOI:10.1007/s11783-017-0946-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

China E P A. National hazardous waste inventory. China Environmental Protection Department and China Development and Reform Commission. Beijing, 2008

[2]

Bakkali M E LBahri MGmouh SJaddi HBakkali MLaglaoui AMzibri M E L. Characterization of bottom ash from two hospital waste incinerators in Rabat, Morocco. Waste Management & Research201331(12): 1228–1236

[3]

Tzanakos KMimilidou AAnastasiadou KStratakis AGidarakos E. Solidification/stabilization of ash from medical waste incineration into geopolymers. Waste Management (New York, N.Y.)201434(10): 1823–1828160;

[4]

Tan ZXiao G. Leaching characteristics of fly ash from Chinese medical waste incineration. Waste Management & Research201230(3): 285–294

[5]

Valavanidis AIliopoulos NFiotakis KGotsis G. Metal leachability, heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in fly and bottom ashes of a medical waste incineration facility. Waste Management & Research200826(3): 247–255

[6]

Xie Y JZhu J X. Leaching toxicity and heavy metal bioavailability of medical waste incineration fly ash. Journal of Material Cycles and Waste Management201315(4): 440–448

[7]

Zhao LZhang F SWang KZhu J. Chemical properties of heavy metals in typical hospital waste incinerator ashes in China. Waste Management (New York, N.Y.)200929(3): 1114–1121

[8]

Johansson Ivan Bavel B. Levels and patterns of polycyclic aromatic hydrocarbons in incineration ashes. Science of the Total Environment2003311(1-3): 221–231

[9]

Zhao LZhang F SHao ZWang H. Levels of polycyclic aromatic hydrocarbons in different types of hospital waste incinerator ashes. Science of the Total Environment2008397(1-3): 24–30

[10]

Chen P WLiu Z SWun M JRan C L. Evaluating the mutagenicity of leachates obtained from the bottom ash of a municipal solid waste incinerator by using a Salmonella reverse mutation assay. Chemosphere2015124: 70–76

[11]

Nemathaga FMaringa SChimuka L. Hospital solid waste management practices in Limpopo Province, South Africa: a case study of two hospitals. Waste Management (New York, N.Y.)200828(7): 1236–1245

[12]

Ibáñez RAndrés AViguri J ROrtiz IIrabien J A. Characterisation and management of incinerator wastes. Journal of Hazardous Materials200079(3): 215–227

[13]

Gidarakos EPetrantonaki MAnastasiadou KSchramm K W. Characterization and hazard evaluation of bottom ash produced from incinerated hospital waste. Journal of Hazardous Materials2009172(2-3): 935–942

[14]

Zhao LZhang F SChen MLiu ZWu D BWu J Z. Typical pollutants in bottom ashes from a typical medical waste incinerator. Journal of Hazardous Materials2010173(1-3): 181–185

[15]

Grillo C AAlvarez Fde Mele M AMele F L D. Cellular response to rare earth mixtures (La and Gd) as components of degradable Mg alloys for medical applications. Colloids and Surfaces. B, Biointerfaces2014117: 312–321

[16]

Zhao LZhang F SZhang J. Chemical properties of rare earth elements in typical medical waste incinerator ashes in China. Journal of Hazardous Materials2008158(2-3): 465–470

[17]

Tessier ACampbell P G CBisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry197951(7): 844–851

[18]

US EPA. Toxicity Characteristic Leaching Procedure. USEPA Method 1311, SW-846 Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, U.S. Environmental Protection Agency, Washington, D C, 1992

[19]

Jang Y CTownsend T G. Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates. Environmental Science & Technology200337(20): 4778–4784

[20]

Denys SCaboche JTack KRychen GWragg JCave MJondreville CFeidt C. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science & Technology201246(11): 6252–6260

[21]

Juhasz A LWeber JSmith ENaidu RRees MRofe AKuchel TSansom L. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils. Environmental Science & Technology200943(24): 9487–9494

[22]

Oomen A GHack AMinekus MZeijdner ECornelis CSchoeters GVerstraete WVan de Wiele TWragg JRompelberg C JSips A JVan Wijnen J H. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology200236(15): 3326–3334

[23]

Pelfr�ne AWaterlot CMazzuca MNisse CCuny DRichard ADenys SHeyman CRoussel HBidar GDouay F. Bioaccessibility of trace elements as affected by soil parameters in smelter-contaminated agricultural soils: a statistical modeling approach. Environmental Pollution2012160(1): 130–138

[24]

Ruby M VDavis ASchoof REberle SSellstone C M. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology199630(2): 422–430

[25]

China E P A. Environmental Protection Ministry of China. GB 16889–2008. Standard for Pollution Control on the Landfill Site of Municipal Solid Waste. Beijing: China Environmental Science Press, 2008

[26]

Liang TLi KWang L. State of rare earth elements in different environmental components in mining areas of China. Environmental Monitoring and Assessment2014186(3): 1499–1513

[27]

Laveuf CCornu SGuilherme L R GGuerin AJuillot F. The impact of redox conditions on the rare earth element signature of redoximorphic features in a soil sequence developed from limestone. Geoderma2012170(1): 25–38

[28]

Li XChen ZChen ZZhang Y. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere201393(6): 1240–1246

[29]

Liang TZhang SWang LKung H TWang YHu ADing S. Environmental biogeochemical behaviors of rare earth elements in soil-plant systems. Environmental Geochemistry and Health200527(4): 301–311

[30]

Dołęgowska SMigaszewski Z M. Anomalous concentrations of rare earth elements in the moss-soil system from south-central Poland. Environmental Pollution2013178(1): 33–40

[31]

Pagano GGuida MTommasi FOral R. Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects. Ecotoxicology and Environmental Safety2015115: 40–48

[32]

Aquino L GMorgana MCarboni M AStaiano MAntisari M VRe MLorito MVinale FAbadi K MWoo S L. Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biology & Biochemistry200941(12): 2406–2413

[33]

EN 12457–2. Characterization of waste-leaching; Compliance test for leaching of granular waste materials and sludges—Part 2: One-stage batch test at a liquid to solids ratio of 10L/kg for materials with a particle size below 4 mm (with or without size reduction), European Standards2002

[34]

Wang CZhu NWang YZhang F. Co-detoxification of transformer oil-contained PCBs and heavy metals in medical waste incinerator fly ash under sub- and supercritical water. Environmental Science & Technology201246(2): 1003–1009

[35]

Yu JSun LXiang JJin LHu SSu SQiu J. Physical and chemical characterization of ashes from a municipal solid waste incinerator in China. Waste Management & Research201331(7): 663–673

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (817KB)

2240

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/