Factors influencing water quality indices in a typical urban river originated with reclaimed water

Jiao Zhang , Zhen Wei , Haifeng Jia , Xia Huang

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 8

PDF (564KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 8 DOI: 10.1007/s11783-017-0943-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Factors influencing water quality indices in a typical urban river originated with reclaimed water

Author information +
History +
PDF (564KB)

Abstract

Pollutants were of low concentration in a river originated with reclaimed water.

Turbidity was affected by algal contents, TOC and flow rate.

The specific growth rate of algae was affected by temperature and flow rate.

The diversity of algal community was strongly negatively correlated with TN.

The water quality in a typical urban river segment originated with reclaimed water in Beijing was monitored for two years to investigate the evolution of water quality along the river, and statistical analysis was applied to determine factors influencing water quality of such river recharged by reclaimed water. It was found that no significant change in pollutant concentrations (including COD, NH4+-N, TN and TP) was observed during this time, and their average values were close to those of the original reclaimed water. However, turbidity and algal contents fluctuated temporally in the direction of river flow. Statistical analysis showed that turbidity was strongly positively correlated with algal contents for flow rate<0.1 m·s1, whereas it was strongly positively correlated with both algal contents and TOC for flow rate>0.1 m·s1. It was observed that diatom was the absolute predominant phyla with Melosira as the major species. In terms of algal bloom control, the specific growth rate of algae was strongly correlated to temperature, and was influenced by flow rate as well. Compared with two other rivers originated with reclaimed water and one originated with natural water, the Shannon–Wiener index in the objective river was the lowest, with values between 0.7 and 1.6, indicating a high risk for algal bloom. Statistics showed that Shannon–Wiener index was strongly negatively correlated to nutrient salts and cations.

Graphical abstract

Keywords

Reclaimed water / Urban river / Turbidity / Algae / Flow rate

Cite this article

Download citation ▾
Jiao Zhang, Zhen Wei, Haifeng Jia, Xia Huang. Factors influencing water quality indices in a typical urban river originated with reclaimed water. Front. Environ. Sci. Eng., 2017, 11(4): 8 DOI:10.1007/s11783-017-0943-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Du PJia HYu S L. Urban watershed management under rapid urbanization. Frontiers of Environmental Science & Engineering20126(5): 595–595

[2]

Loucks D PJia H. Managing water for life. Frontiers of Environmental Science & Engineering20126(2): 255–264

[3]

Okun D A. Water reclamation and unrestricted nonpotable reuse: a new tool in urban water management. Annual Review of Public Health200021(1): 223–245

[4]

Posnett J JLongdin R ECosta MDionisio L P C. Position of the Australian horticultural industry with respect to the use of reclaimed water. Agricultural Water Management200571(3): 181–209

[5]

Zeng W, Wu B, Chai Y.Dynamic simulation of urban water metabolism under water environmental carrying capacity restrictions.  Frontiers of Environmental Science & Engineering201610(1): 114–128

[6]

Jia HGuo RXin KWang J. Research on wastewater reuse planning in Beijing central region. Water Science and Technology200551(10): 195–202

[7]

Kharaka Y KSchroeder R ASetmire J G. Reclaiming agricultural drainage water with nanoriltration membranes: Imperial Valley, California, USA. In: Proceedings of the International Symposium on Water Resources and the Urban Environment. Beijing: China Environmental Science Press, 2003, 14–20

[8]

Xu MBai XPei LPan H. A research on application of water treatment technology for reclaimed water irrigation. International Journal of Hydrogen Energy201641(35): 15930–15937

[9]

Lin WXuan ZMeng ZZhou C. Desalination of reclaimed water by nanofiltration in an artificial groundwater recharge system. Journal of Water Supply: Research & Technology- Aqua200958(7): 463–469

[10]

Wang TLi YLiang MYang PBai Z. Biofilms on the surface of gravels and aquatic plants in rivers and lakes with reusing reclaimed water. Environmental Earth Sciences201472(3): 743–755

[11]

Zheng FLiu LLi BYang YGuo M. Effects of reclaimed water use for scenic water on groundwater environment in a multilayered aquifer system beneath the Chaobai River, Beijing, China: case study. Journal of Hydrologic Engineering201520(3): B5014003

[12]

Wang T, Xu Z, Li Y, Liang M, Wang Z, Paul H. Biofilm growth kinetics and nutrient (N/P) adsorption in an urban lake using reclaimed water: a quantitative baseline for ecological health assessment.  Ecological Indicators201671: 598–607

[13]

Jia HMa HSun ZYu SDing YLiang Y. A closed urban scenic river system using stormwater treated with LID-BMP technology in a revitalized historical district in China. Ecological Engineering201471: 448–457

[14]

Yu YSong XZhang YZheng FLiang JLiu L. Identifying spatio-temporal variation and controlling factors of chemistry in groundwater and river water recharged by reclaimed water at Huai River, North China. Stochastic Environmental Research and Risk Assessment201428(5): 1135–1145

[15]

Feng CLi YZhang YLi S. Eutrophication of enclosed landscape water supplemented by reclaimed water. Journal of Tianjin University (Science and Technology), 201043(8): 727–732 (in Chinese)

[16]

Fan JZhouw BZhang HGao L. Algae growth comparison in a landscape pond supplied with reclaimed water. Research of Environmental Sciences201225(5): 573–578 (in Chinese)

[17]

APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater, 21st ed. Birmingham AL: American Public Health Association, USA, 2005

[18]

Butterwick CHeaney S ITalling J F. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology200550(2): 291–300

[19]

Roos J CPieterse A J H. Light, temperature and flow regimes of the Vaal River at balkfontein, South-Africa. Hydrobiologia1994277(1): 1–15

[20]

Borchardt M A. Effects of flowing water on nitrogen- and phosphorus-limited photosynthesis and optimum N:P ratios by Spirogyra fluviatilis (charophyceae). Journal of Phycology199430(30): 418–430 doi:10.1111/j.0022-3646.1994.00418.x

[21]

Mitrovic S MOliver R LRees CBowling L CBuckney R T. Critical flow velocities for the growth and dominance of Anabaena circinalis in some turbid freshwater rivers. Freshwater Biology200348(1): 164–174

[22]

Escartı́ N JAubrey D G. Flow structure and dispersion within algal mats. Estuarine, Coastal and Shelf Science199540(4): 451–472

[23]

Huang Y LLiu D FChen M X. Simulation of algae bloom under different flow velocity. Chinese Journal of Applied Ecology200819(10): 2293–2298 (in Chinese)

[24]

Csikkel-Szolnoki ABathori MBlunden G. Determination of elements in algae by different atomic spectroscopic methods. Microchemical Journal200067(1–3): 39–42 doi:10.1016/S0026-265X(00)00093-X

[25]

Thamatrakoln KKustka A B. When to say when: Can excessive drinking explain silicon uptake in diatoms? BioEssays200931(3): 322–327

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (564KB)

Supplementary files

FSE-17038-OF-ZJ_suppl_1

3156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/