Greenhouse gas emissions from different pig manure management techniques: a critical analysis
Conor Dennehy , Peadar G. Lawlor , Yan Jiang , Gillian E. Gardiner , Sihuang Xie , Long D Nghiem , Xinmin Zhan
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 11
Greenhouse gas emissions from different pig manure management techniques: a critical analysis
Emissions from manure management are the primary source of GHGs in pig farming. The effect of pig manure management practises on GHG emissions was assessed. Recommendations made to standardise units and account for indirect N2O emissions. AD and compositing should be employed to mitigate GHG emissions in PGM management.
Manure management is the primary source of greenhouse gas (GHG) emissions from pig farming, which in turn accounts for 18% of the total global GHG emissions from the livestock industry. In this review, GHG emissions (N2O and CH4 emissions in particular) from individual pig manure (PGM) management practices (European practises in particular) are systematically analyzed and discussed. These manure management practices include manure storage, land application, solid/liquid separation, anaerobic digestion, composting and aerobic wastewater treatment. The potential reduction in net GHG emissions by changing and optimising these techniques is assessed. This review also identifies key research gaps in the literature including the effect of straw covering of liquid PGM storages, the effect of solid/liquid separation, and the effect of dry anaerobic digestion on net GHG emissions from PGM management. In addition to identifying these research gaps, several recommendations including the need to standardize units used to report GHG emissions, to account for indirect N2O emissions, and to include a broader research scope by conducting detailed life cycle assessment are also discussed. Overall, anaerobic digestion and compositing to liquid and solid fractions are best PGM management practices with respect to their high GHG mitigation potential.
CH 4 / N 2O / Storage / Anaerobic digestion / Composting / Separation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
FAO. FAOSTAT 2013. Available online at accessed September 7, 2016) |
| [5] |
European Commission. EU Climate Action: Key targets for 2030. Available online at 160;(accessed January 18, 2017) |
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Kangawa, Japan: IGES, 2006 |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |