Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia

John C. Radcliffe , Declan Page , Bruce Naumann , Peter Dillon

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 7

PDF (541KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 7 DOI: 10.1007/s11783-017-0937-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia

Author information +
History +
PDF (541KB)

Abstract

Low Impact Development was able to be adopted over a 50 year period by the City of Salisbury as it expanded from 4160 to 137,000 people

The management of stormwater and groundwater was integrated through use of wetlands and managed aquifer recharge.

Federal, state and local government contributed with developers and local industry to establish the integrated system as a commercial business supplying recycled water for non-potable amenity and industrial use.

It has been shown with little additional water treatment, water originally treated through wetlands and aquifer storage could be safely withdrawn for a range of uses including as a potable water source.

Australia has developed extensive policies and guidelines for the management of its water. The City of Salisbury, located within metropolitan Adelaide, South Australia, developed rapidly through urbanisation from the 1970s. Water sensitive urban design principles were adopted to maximise the use of the increased run-off generated by urbanisation and ameliorate flood risk. Managed aquifer recharge was introduced for storing remediated low-salinity stormwater by aquifer storage and recovery (ASR) in a brackish aquifer for subsequent irrigation. This paper outlines how a municipal government has progressively adopted principles of Water Sensitive Urban Design during its development within a framework of evolving national water policies. Salisbury’s success with stormwater harvesting led to the formation of a pioneering water business that includes linking projects from nine sites to provide a non-potable supply of 5 × 106 m3·year−1. These installations hosted a number of applied research projects addressing well configuration, water quality, reliability and economics and facilitated the evaluation of its system as a potential potable water source. The evaluation showed that while untreated stormwater contained contaminants, subsurface storage and end-use controls were sufficient to make recovered water safe for public open space irrigation, and with chlorination, acceptable for third pipe supplies. Drinking water quality could be achieved by adding microfiltration, disinfection with UV and chlorination. The costs that would need to be expended to achieve drinking water safety standards were found to be considerably less than the cost of establishing dual pipe distribution systems. The full cost of supply was determined to be AUD$1.57 m−3 for non-potable water for public open space irrigation, much cheaper than mains water, AUD$3.45 m−3at that time. Producing and storing potable water was found to cost AUD$1.96 to $2.24 m−3.

Graphical abstract

Keywords

Managed Aquifer Recharge (MAR) / Stormwater harvesting / Water recycling drinking water / Low impact development / Water sensitive urban design

Cite this article

Download citation ▾
John C. Radcliffe, Declan Page, Bruce Naumann, Peter Dillon. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia. Front. Environ. Sci. Eng., 2017, 11(4): 7 DOI:10.1007/s11783-017-0937-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Commonwealth of Australia Constitution Act  1900(Imp) constituting the Commonwealth of Australia. 160;(accessed January 13 2017)

[2]

NWQMS National Water Quality Management Strategy. 2015, 160;(accessed 10 February 2016)

[3]

NRMMC. EPHC and NHMRC. Australian Guidelines for Water Recycling, Managing Health and Environmental Risks, Volume 2C- Managed Aquifer Recharge. Natural Resource Management Ministerial Council, Environment Protection and Heritage Council National Health and Medical Research Council2009, 237pp. 160;(accessed 24 February 2016)

[4]

Clar M. State of the LID/GSI Practice: Perspectives from the ASCE-EWRI-LID/GSI National Committee, LID 2016 Conference, Beijing, Paper 336

[5]

CoAG. Intergovernmental Agreement on the National Water Initiative, 2004160;(accessed 10 February 2016)

[6]

JSCWSC. Evaluating options for Water Sensitive Urban Design – a National Guide, Joint Steering Committee for Water Sensitive Cities, 2009Department of Environment, Water, Heritage and the Arts, Canberra, Australia160;(accessed 10 February 2016)

[7]

City of Salisbury. Our History, 2016. 160;(accessed 10 February 2016)

[8]

Hains S. Stormwater: Towards Water Sensitive Cities, Local Government Managers Association Congress, 2009Darwin, Australia. 160;(accessed 10 February 2016)

[9]

Hutchings AGarnaut C. The Private Development Company and the Building of Planned Communities in Post-war South Australia: Reid Murray Developments, Reality Development Corporation and their successors. Journal of the Historical Society of South Australia201240: 96–116

[10]

City of Salisbury. Wetlands locations. 2015160;(accessed 10 February 2016)

[11]

Radcliffe J C. Water Recycling in Australia 2004Australian Academy of Technological Sciences and Engineering, Melbourne

[12]

Dandy GGanji AKandulu JHatton MacDonald DMarchi AMaier HMankad ASchmidt C E. (2014). Goyder Institute for Water Research Technical Report Series No. 14/1, Adelaide, South Australia. ISSN: 1839–2725. 160;(accessed 18 Jan 2017)

[13]

Page DBarry KPavelic PDillon PChassagne C. Preliminary quantitative risk assessment for the Salisbury stormwater ASTR project, 2008Water for a Healthy Country National Research Flagship Report. 160;(accessed 17 January 2017).

[14]

Page DMiotliński KGonzalez DBarry KDillon PGallen C. Environmental monitoring of selected pesticides and organic chemicals in urban stormwater recycling systems using passive sampling techniques. Journal of Contaminant Hydrology2014158: 65–77

[15]

Page DGonzalez DNaumann BDillon PVanderzalm JBarry K. Stormwater Managed Aquifer Recharge Risk-Based Management Plan, Parafield Stormwater Harvesting System, Stormwater supply to the Mawson Lakes Recycled Water Scheme, Industrial Uses and Public Open Space Irrigation, 2013Goyder Institute for Water Research Technical Report 13/18, Adelaide, South Australia

[16]

Page D WVanderzalm J LBarry K ETorkzaban SGonzalez DDillon P J. Dillon, P J. E. coli and turbidity attenuation during urban stormwater recycling via Aquifer Storage and Recovery in a brackish limestone aquifer. Ecological Engineering201584: 427–434

[17]

Page DGonzalez DDillon PVanderzalm JVadakattu GToze SSidhu JMiotlinski KTorkzaban SBarry K. Managed Aquifer Recharge Stormwater Use Options: Public Health and Environmental Risk Assessment Final Report, Goyder Institute for Water Research 2013Technical Report 13/17, Adelaide, South Australia

[18]

DPLG. 2011, Spatial Data Download.  Department of Planning and Local Government, Adelaide, South Australia (accessed 4 June 2011)

[19]

DPTI. 2016, Development Plan, Salisbury Council, Consolidated to 7 January 2016. Department of Planning Transport and Infrastructure, Adelaide, South Australia, (617pp)

[20]

City of Salisbury – Annual Reports. 160;(accessed 19 January 2017)

[21]

Pitman C. Stormwater harvesting and utilisation. Water Recycling Australia, 2nd National Conference 2003, Brisbane. Australia.

[22]

Radcliffe J C. Water recycling in Australia – during and after the drought. Environmental Science Water Research & Technology20151(5): 554–562

[23]

Page DGonzalez DSidhu JToze STorkzaban SDillon P. Assessment of treatment options of recycling urban stormwater recycling via aquifers to produce drinking water quality. Urban Water Journal201613(6): 657–662

[24]

Dillon PPage DDandy GLeonard RTjandraatmadja GVanderzalm JRouse KBarry KGonzalez DMyers B. Managed Aquifer Recharge Stormwater Use Options: Summary of Research Findings, Goyder Institute for Water Research, 2014Technical Report 14/13. 160;(accessed 24 February 2016)

[25]

Page D WBarry KGonzalez DKeegan ADillon P. Reference pathogen numbers in urban stormwater for drinking water risk assessment. Journal of Water and Health201616(1): 30–39

[26]

Page DVanderzalm JDillon PGonzalez DBarry K. Stormwater quality review to evaluate treatment for drinking water supply via managed aquifer recharge. Water, Air, and Soil Pollution2016227(9): 1–16

[27]

Page DGonzalez DTorkzaban SToze SSidhu JMiotliński KBarry KDillon P. Microbiological risks of recycling urban stormwater via aquifers for various uses in Adelaide, Australia. Environmental Earth Sciences201573(12): 7733–7737 

[28]

WHO Guidelines for Drinking-Water Quality. 4th Edn. 2011World Health Organisation, Geneva, Switzerland. 160;(accessed 1 November 2016)

[29]

Clark RGonzalez DDillon PCharles SCresswell DNaumann B. Reliability of water supply from stormwater harvesting and managed aquifer recharge with a brackish aquifer in an urbanising catchment and changing climate. Environmental Modelling & Software201572: 117–125

[30]

Sidhu J P SToze SHodgers LShackelton MBarry KPage DDillon P. Pathogen inactivation during passage of stormwater through a constructed reedbed and aquifer transfer, storage and recovery. Water Science and Technology201062(5): 1190–1197

[31]

Sidhu J PToze SHodgers LBarry KPage DLi YDillon P. Pathogen decay during Managed Aquifer Recharge at four different sites with different geochemical characteristics and recharge water sources.  Journal  of  Environmental  Quality201544(5): 1402–1412

[32]

Stevens D. Audit of the Parafield Stormwater Harvesting and Managed Aquifer Recharge System for Non- Potable Use against the Stormwater Risk- Based Management Plan. Goyder Institute for Water Research 2014Occasional Paper Series No. 14/1. 160;(accessed 24 February 2016)

[33]

Water Sensitive S A. 160;(accessed 18 Jan 2017)

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (541KB)

2382

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/