Zero increase in peak discharge for sustainable development

Xing Fang , Junqi Li , Yongwei Gong , Xiaoning Li

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 2

PDF (258KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 2 DOI: 10.1007/s11783-017-0935-5
REVIEW ARTICLE
REVIEW ARTICLE

Zero increase in peak discharge for sustainable development

Author information +
History +
PDF (258KB)

Abstract

Comprehensive stormwater management needs both LID and detention basins.

Zero-increase in peak discharge policy is still valid/used in developed countries.

Design rainfalls for LID are smaller than ones for detention basin.

Detention basin reduces peak discharges for several return-period rainfalls.

Financial responsibility and sustainable development demand zero-increase policy.

For urban land development, some or all natural land uses (primarily pervious) are converted into impervious areas which lead to increases of runoff volume and peak discharge. Most of the developed countries require a zero increase in peak discharge for any land development, and the policy has been implemented for several decades. The policy of zero increase in peak discharge can be considered as historical and early stage for the low impact development (LID) and sustainable development, which is to maintain natural hydrological conditions by storing a part or all of additional runoff due to the development on site. The paper will discuss the policy, the policy implementation for individual projects and their impact on regional hydrology. The design rainfalls for sizing LID facilities that are determined in 206 weather stations in USA are smaller than design rainfalls for sizing detention basins. The zero-increase policy links to financial responsibility and sustainability for construction of urban stormwater infrastructures and for reducing urban flooding. The policy was compared with current practices of urban development in China to shine the light for solving urban stormwater problems. The connections and differences among LID practices, the zero-increase policy, and the flood control infrastructure were discussed. We promote and advocate the zero-increase policy on peak discharge for comprehensive stormwater management in China in addition to LID.

Graphical abstract

Keywords

Stormwater management / Detention basin / Zero increase / Peak discharge / Sustainable development / Design rainfall

Cite this article

Download citation ▾
Xing Fang, Junqi Li, Yongwei Gong, Xiaoning Li. Zero increase in peak discharge for sustainable development. Front. Environ. Sci. Eng., 2017, 11(4): 2 DOI:10.1007/s11783-017-0935-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Viessman WLewis  G L. Introduction to Hydrology. 5th ed. Upper Saddle River, NJ: Pearson Education, 2003

[2]

McCuen R H. Downstream effects of stormwater management basins. Journal of the Hydraulics Division1979105(11): 1343–1356

[3]

Davis A P. Green engineering principles promote low-impact development. Environmental Science & Technology200539(16): 338A–344Anbsp;

[4]

Jia HYao  HYu S L . Advances in LID BMPs research and practice for urban runoff control in China. Frontiers of Environmental Science & Engineering20137(5): 709–720

[5]

Malaviya PSingh  A. Constructed wetlands for management of urban stormwater runoff. Critical Reviews in Environmental Science and Technology201242(20): 2153–2214 

[6]

Center for Watershed Protection. Stormwater Wet Pond and Wetland Management Guidebook. Washington DC: US Environmental Agency2009

[7]

Storey A L Jr, Talbott M DFitzgerald  S. Policy, Criteria, and Procedure Manual for Approval and Acceptance of Infrastructure. Houston, TX: Harris County Flood Control District2004

[8]

Li LLi  QXu Z j . Design study of detention bain in Nanchang Changbei Airport. Water & Wastewater Engineering201440(4): 82–84 (in Chinese)

[9]

Cheng JQi  J YXu  L. Inlet mode optimization of Chengdulu stormwater detention tank in Shanghai. China Water & Wastewater2014, 30(5): 104–109 (in Chinese)

[10]

Li J QYu  PChe W Qiu S Q . Optimization of the scale of urban rainwater accumulation and utilization project. China Water and Wastewater200521(3): 49–52 (in Chinese)

[11]

Prince George’s County. Low-Impact Development Design Strategies: an Integrated Design Approach. Prince George’s County, Maryland: Department of Environmental Resources, Programs and Planning Division1999

[12]

Guo Y. Hydrologic design of urban flood control detention ponds. Journal of Hydrologic Engineering20016(6): 472–479 

[13]

Guo YAdams  B J. Analysis of detention ponds for storm water quality control. Water Resources Research199935(8): 2447–2456

[14]

Sharifi SMassoudieh  AKayhanian M . A stochastic stormwater quality volume-sizing method with first flush emphasis. Water Environment Research201183(11): 2025–2035

[15]

Zhang KChe  WZhang W Zhao Y. Discussion about initial runoff and volume capture ratio of annual rainfall. Water Science and Technology201674(8): 1764–1772nbsp;

[16]

USEPA. Technical Guidance on Implementing the Stormwater Runoff Requirements for Federal Projects under Section 438 of the Energy Independence and Security Act. Washington, DC: United States Environmental Protection Agency2009

[17]

Shrestha SFang  XLi J . Mapping the 95th Percentile Daily Rainfall in the Contiguous U.S. Cincinnati, Ohio: World Environmental and Water Resources Congress2013

[18]

Hershfield D M . Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years. Washington, DC: US Weather Bureau, US Department of Commerce1963

[19]

Sushban SFang  XZech W C . What should be the 95th percentile rainfall event depths? Journal of Irrigation and Drainage Engineering2013140(1): 06013002 

[20]

Asquith W HRoussel  M CCleveland  T GFang  XThompson D B . Statistical Characteristics of Storm Interevent Time, Depth, and Duration for Eastern New Mexico, Oklahoma, and Texas. U.S. Austin, Texas: Geological Survey, Texas Water Science Center2006

[21]

Guo J C Y Urbonas B . Maximized detention volume determined by runoff capture ratio. Journal of Water Resources Planning and Management1996122(1): 33–39

[22]

USEPA. Results of the Nationwide Urban Runoff Program- Executive Summary. Washington DC: Water Planning Division, United States Environmental Protection Agency (USEPA)1983

[23]

USEPA. Development Document for Final Effluent Guidelines and Standards for the Construction & Development Category. Washington, DC: US Environmental Protection Agency (USEPA), Office of Water2009

[24]

Hossain M AAlam  MYonge D R Dutta P . Efficiency and flow regime of a highway stormwater detention pond in Washington, USA. Water, Air, and Soil Pollution2005164(1): 79–89

[25]

Bhardwaj A KMcLaughlin  R A. Simple polyacrylamide dosing systems for turbidity reduction in stilling basins. Transactions of the ASABE200851(5): 1653–1662

[26]

McLaughlin R A Hayes S A Clinton D L McCaleb M M Jennings G D . Water quality improvements using modified sediment control systems on construction sites. Transactions of the ASABE200952(6):1859–1867

[27]

Haan C TBarfield  B JHayes  J C. Design Hydrology and Sedimentology for Small Catchments. New York: Academic Press1994

[28]

Barfield B JClar  M. Development of New Design Criteria for Sediment Traps and Basins. Annapolis, MD: Prepared for the Maryland Resource Administration1985

[29]

Su DFang  XFang Z . Effectiveness and downstream impacts of stormwater detention basins required for urban land development. In: 2010 World Environmental and Water Resources Congress, Providence, Rhode Island. Reston: American Society of Civil Engineers, 2010,3071–3081 

[30]

Guo J C Y . Retrofitting detention basin with water quality control pool. Journal of Irrigation and Drainage Engineering2009135(5): 671–675

[31]

Emerson C HWelty  CTraver R G . Watershed-scale evaluation of a system of storm water detention basins. Journal of Hydrologic Engineering200510(3): 237–242 

[32]

Goff K MGentry  R W. The influence of watershed and development characteristics on the cumulative impacts of stormwater detention ponds. Water Resources Management200620(6): 829–860

[33]

Fang ZZimmer  ABedient P B Robinson H Christian J Vieux B E . Using a distributed hydrologic model to evaluate the location of urban development and flood control storage. Journal of Water Resources Planning and Management2010136(5): 597–601 

[34]

Koontz T MThomas  C W. Measuring the performance of public-private partnerships: A systematic method for distinguishing outputs from outcomes. Public Performance & Management Review201238(4): 717–747 

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (258KB)

2649

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/