A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbial characteristics

Jianwei Liu , Kaixiong Yang , Lin Li , Jingying Zhang

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 6

PDF (541KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 6 DOI: 10.1007/s11783-017-0932-8
RESEARCH ARTICLE
RESEARCH ARTICLE

A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbial characteristics

Author information +
History +
PDF (541KB)

Abstract

The integrated-bioreactor consists of a suspended zone and an immobilized zone.

H2S and NH3 from WWTP were effectively eliminated by the integrated-bioreactor.

Different microbial populations dominated in the individual zones.

Most of the H2S was bio-oxidized into elemental sulfur and sulfate in IZ.

Large amount of NH3 was converted into nitrate and nitrite in SZ.

A full-scale integrated-bioreactor consisting of a suspended zone and an immobilized zone was employed to treat the ordours emitted from a wastewater treatment plant. The inlet concentrations of H2S and NH3 were 1.6–38.6 mg·m3 and 0.1–6.7 mg·m3, respectively, while the steady-state outlet concentrations were reduced to 0–2.8 mg·m3 for H2S and 0–0.5 mg·m3 for NH3. Both H2S and NH3 were eliminated effectively by the integrated-bioreactor. The removal efficiencies of H2S and NH3 differed between the two zones. Four species of microorganisms related to the degradation of H2S and NH3 were isolated. The characteristics and distributions of the microbes in the bioreactor depended on the inlet concentration of substrates and the micro-environmental conditions in the individual zones. Product analysis indicated that most of the H2S was oxidized into sulfate in the immobilized zone but was dissolved into the liquid phase in the suspended zone. A large amount of NH3 was converted into nitrate and nitrite by nitration in the suspended zone, whereas only a small amount of NH3 was transferred to the aqueous phase mainly by absorption or chemical neutralization in the immobilized zone. Different microbial populations dominated the individual zones, and the major biodegradation products varied accordingly.

Graphical abstract

Keywords

Biological deodorization / Microbial characteristics / Ammonia / Hydrogen sulfide / Wastewater treatment plant

Cite this article

Download citation ▾
Jianwei Liu, Kaixiong Yang, Lin Li, Jingying Zhang. A full-scale integrated-bioreactor with two zones treating odours from sludge thickening tank and dewatering house: performance and microbial characteristics. Front. Environ. Sci. Eng., 2017, 11(4): 6 DOI:10.1007/s11783-017-0932-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Omri IBouallagui HAouidi FGodon J JHamdi M. H2S gas biological removal efficiency and bacterial community diversity in biofilter treating wastewater odor. Bioresource Technology2011102(22): 10202–10209

[2]

Xi JKang IHu HZhang X. A biofilter model for simultaneous simulation of toluene removal and bed pressure drop under varied inlet loadings. Frontiers of Environmental Science & Engineering20159(3): 554–562

[3]

Baspi A BTurkeṙ MHocalar AOzturk I. Biogas desulphurization at technical scale by lithotrophic denitrification: integration of sulphide and nitrogen removal. Process Biochemistry201146(4): 916–922

[4]

Chen YFan ZMa LYin JLuo MCai W. Performance of three pilot-scale immobilized-cell biotrickling filters for removal of hydrogen sulfide from a contaminated air steam. Saudi Journal of Biological Sciences201421(5): 450–456

[5]

Burgess J EParsons S AStuetz R M. Developments in odour control and waste gas treatment biotechnology: a review. Biotechnology Advances200119(1): 35–63

[6]

Ralebitso-Senior T KSenior EDi Felice RJarvis K. Waste gas biofiltration: advances and limitations of current approaches in microbiology. Environmental Science & Technology201246(16): 8542–8573

[7]

Chitwood D EDevinny J SReynolds F E. Evaluation of a two-stage biofilter for treatment of POTW waste air. Environmental Progress & Sustainable Energy199918(3): 212–221 

[8]

vanLith C, Leson G, Michelsen R. Evaluating design options for biofilters. Journal of the Air & Waste Management Association199747(1): 37–48

[9]

Zhang LMa JJin YZhang HLiu YCai L. Abatement of sulfide generation in sewage by glutaraldehyde supplementation and the impact on the activated sludge accordingly. Frontiers of Environmental Science & Engineering20159(2): 365–370

[10]

Li YShi LQian YTang J. Diffusion of municipal wastewater treatment technologies in China: a collaboration network perspective. Frontiers of Environmental Science & Engineering201711(1): 11

[11]

Li FLei TZhang YWei JYang Y. Preparation, characterization of sludge adsorbent and investigations on its removal of hydrogen sulfide under room temperature. Frontiers of Environmental Science & Engineering20159(2): 190–196

[12]

Liang YQuan XChen JChung J SSung J YChen SXue DZhao Y. Long-term results of ammonia removal and transformation by biofiltration. Journal of Hazardous Materials200080(1–3): 259–269

[13]

Rabbani K ACharles WKayaalp ACord-Ruwisch RHo G. Pilot-scale biofilter for the simultaneous removal of hydrogen sulphide and ammonia at a wastewater treatment plant. Biochemical Engineering Journal2015107: 1–10

[14]

Mannucci AMunz GMori GLubello C. Biomass accumulation modelling in a highly loaded biotrickling filter for hydrogen sulphide removal. Chemosphere201288(6): 712–717

[15]

Both G JGerards SLaanbroek H J. Most probable numbers of chemolitho-autotrophic nitrite-oxidizing bacteria in well drained grassland soils: stimulation by high nitrite concentrations. FEMS Microbiology Ecology199074(4): 287–293

[16]

Cho K SZhang LHirai MShoda M. Removal characteristics of hydrogen sulphide and methanethiol by Thiobacillus sp. isolated from peat in biological deodorization. Journal of Fermentation and Bioengineering199171(1): 44–49

[17]

Moriarty D JNicholas D J. Products of sulphide oxidation in extracts of Thiobacillus concretivorus. Biochimica et Biophysica Acta1970197(2): 143–151

[18]

Chung Y CHuang CTseng C P. Operation optimization of Thiobacillus thioparus CH11 biofilter for hydrogen sulfide removal. Journal of Biotechnology199652(1): 31–38

[19]

Li LZhang JLin JLiu J. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics. World Journal of Microbiology & Biotechnology201531(10): 1501–1515

[20]

Wang LWei BChen ZDeng LSong LWang SZheng DLiu YPu XZhang Y. Effect of inoculum and sulfide type on simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry and microbial mechanism. Applied Microbiology and Biotechnology201599(24): 10793–10803

[21]

Devinny J SDeshusses M AWebster T S. Biofiltration for Air Pollution Control.New York: Crc Pr Inc, 1999

[22]

Mudliar SGiri BPadoley KSatpute DDixit RBhatt PPandey RJuwarkar AVaidya A. Bioreactors for treatment of VOCs and odours—A review. Journal of Environmental Management201091(5): 1039–1054

[23]

Liu DHansen M JGuldberg L BFeilberg A. Kinetic evaluation of removal of odorous contaminants in a three-stage biological air filter. Environmental Science & Technology201246(15): 8261–8269

[24]

Esposito R. Genium’s Handbook of Safety, Health, and Environmental Data (for Common Hazardous Substances). New York, NY: McGraw-Hill, Genium Publishing Corporation1999

[25]

Liu J WZhao Y ZMa W L. Removal of ammonia from waste gases by a biotrickling filter. Advanced Materials Research2011233–235: 759–764

[26]

Ministry of Environmental Protection of China.Standard Methods for the Examination of Water and Wastewater. 4th ed. Beijing, China: Chinese Environmental Science Publishers, 2002

[27]

Lin LLiu J XWang J LPan X L. Identification and characteristic analysis of microorganisms in an integrated bioreactor for odours treatment. International Journal of Environment and Pollution200937(1): 216–234

[28]

Kanagawa TMikami E. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m. Applied and Environmental Microbiology198955(3): 555–558 PMID:2930168

[29]

Cho K SRyu H WLee N Y. Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans. Journal of Bioscience and Bioengineering200090(1): 25–31

[30]

Shinabe KOketani SOchi TMatsumura M. Characteristics of hydrogen sulfide removal by Thiobacillus thiooxidans KS1 isolated from a carrier-packed biological deodorization system. Journal of Fermentation and Bioengineering199580(6): 592–598

[31]

Veir J KSchroeder E DChang D P YScow K M. Interaction between toluene and dichloromethane degrading populations in a compost biofilter. In: Proceedings of the 89th Annual Meeting and Exhibition of the Air and Waste Management Association, Nashville. Pittsburgh: USA Air & Waste Management Association1996, 89

[32]

Chung Y CHuang CTseng C P. Biological elimination of H2S and NH3 from wastegases by biofilter packed with immobilized heterotrophic bacteria. Chemosphere200143(8): 1043–1050nbsp;

[33]

Elias ABarona AArreguy ARios JAranguiz IPenas J. Evaluation of a packing material for the biodegradation of H2S and product analysis. Process Biochemistry200237(8): 813–820

[34]

Easter CQuigley CBurrowes PWitherspoon JApgar D. Odor and air emissions control using biotechnology for both collection and wastewater treatment systems. Chemical Engineering Journal2005113(2–3): 93–104

[35]

YangYAllenE R. Biofiltration control of hydrogen sulfide 1. Design and operational parameters.Air & Waste199444(7): 863–868

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (541KB)

Supplementary files

FSE-17026-OF-LJW_suppl_1

2331

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/