Peroxyacetyl nitrate measurements by thermal dissociation–chemical ionization mass spectrometry in an urban environment: performance and characterizations

Xinfeng Wang , Tao Wang , Likun Xue , Wei Nie , Zheng Xu , Steven C. N. Poon , Wenxing Wang

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 3

PDF (1832KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 3 DOI: 10.1007/s11783-017-0925-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Peroxyacetyl nitrate measurements by thermal dissociation–chemical ionization mass spectrometry in an urban environment: performance and characterizations

Author information +
History +
PDF (1832KB)

Abstract

The loss degree of PAN signal in a TD-CIMS caused by NO is tested and quantified.

TD-CIMS is applicable for PAN measurement in urban areas with necessary correction.

The PAN formation efficiency in urban Hong Kong increased with NO2 concentration.

Peroxyacetyl nitrate (PAN) is an important indicator of photochemical smog and has adverse effects on human health and vegetation growth. A rapid and highly selective technique of thermal dissociation–chemical ionization mass spectrometry (TD-CIMS) was recently developed to measure the abundance of PAN in real time; however, it may be subject to artifact in the presence of nitric oxide (NO). In this study, we tested the interference of the PAN signal induced by NO, evaluated the performance of TD-CIMS in an urban environment, and investigated the concentration and formation of PAN in urban Hong Kong. NO caused a significant underestimation of the PAN signal in TD-CIMS, with the underestimation increasing sharply with NO concentration and decreasing slightly with PAN abundance. A formula was derived to link the loss of PAN signal with the concentrations of NO and PAN, which can be used for data correction in PAN measurements. The corrected PAN data from TD-CIMS were consistent with those from the commonly used gas chromatography with electron capture detection, which confirms the utility of TD-CIMS in an urban environment in which NO is abundant. In autumn of 2010, the hourly average PAN mixing ratio varied from 0.06 ppbv to 5.17 ppbv, indicating the occurrence of photochemical pollution in urban Hong Kong. The formation efficiency of PAN during pollution episodes was as high as 3.9 to 5.9 ppbv per 100 ppbv ozone. PAN levels showed a near-linear increase with NOx concentration, suggesting a control policy of NOx reduction for PAN pollution.

Graphical abstract

Keywords

TD-CIMS / Peroxyacetyl nitrate / Interference / Photochemical pollution / Formation efficiency

Cite this article

Download citation ▾
Xinfeng Wang, Tao Wang, Likun Xue, Wei Nie, Zheng Xu, Steven C. N. Poon, Wenxing Wang. Peroxyacetyl nitrate measurements by thermal dissociation–chemical ionization mass spectrometry in an urban environment: performance and characterizations. Front. Environ. Sci. Eng., 2017, 11(4): 3 DOI:10.1007/s11783-017-0925-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stephens E R. The formation, reactions, and properties of peroxyacyl nitrates (PANs) in photochemical air pollution. Advances in Environmental Science and Technology19691: 119–146

[2]

Vyskocil AViau  CLamy S . Peroxyacetyl nitrate: review of toxicity. Human & Experimental Toxicology199817(4): 212–220

[3]

Parrish D DXu  JCroes B Shao M. Air quality improvement in Los Angeles—Perspectives for developing cities. Frontiers of Environmental Science & Engineering201610(5): 11

[4]

Taylor O C. Importance of peroxyacetyl nitrate (PAN) as a phytotoxic air pollutant. Journal of the Air Pollution Control Association196919(5): 347–351

[5]

Temple P JTaylor  O C. World-wide ambient measurements of peroxyacetyl nitrate (PAN) and implications for plant injury. Atmospheric Environment198317(8): 1583–1587

[6]

Ridley B AShetter  J DGandrud  B WSalas  L JSingh  H BCarroll  M AHübler  GAlbritton D L Hastie D R Schiff H I Mackay G I Karechi D R Davis D D Bradshaw J D Rodgers M O Sandholm S T Torres A L Condon E P Gregory G L Beck S M . Ratios of peroxyacetyl nitrate to active nitrogen observed during aircraft flights over the eastern pacific oceans and continental United States. Journal of Geophysical Research199095(D7): 10179–10192

[7]

Singh H BSalas  L JRidley  B AShetter  J DDonahue  N MFehsenfeld  F CFahey  D WParrish  D DWilliams  E JLiu  S CHubler  GMurphy P C . Relationship between peroxyacetyl nitrate and nitrogen oxides in the clean troposphere. Nature1985318(6044): 347–349

[8]

Orlando J JTyndall  G SCalvert  J G. Thermal decomposition pathways for peroxyacetyl nitrate (PAN): implications for atmospheric methyl nitrate levels. Atmospheric Environment. Part A, General Topics199226(17): 3111–3118

[9]

Singh H BSalas  L JViezee  W. Global distribution of peroxyacetyl nitrate. Nature1986321(6070): 588–591

[10]

Gaffney J SMarley  N ACunningham  M MDoskey  P V. Measurements of peroxyacyl nitrates (PANS) in Mexico City: implications for megacity air quality impacts on regional scales. Atmospheric Environment199933(30): 5003–5012

[11]

Zhang J BXu  ZYang G Wang B. Peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in urban and suburban atmospheres of Beijing, China. Atmospheric Chemistry and Physics Discussion201111(3): 8173–8206

[12]

Williams JRoberts  J MBertman  S BStroud  C AFehsenfeld  F CBaumann  KBuhr M P Knapp K Murphy P C Nowick M Williams E J . A method for the airborne measurement of PAN, PPN, and MPAN. Journal of Geophysical Research2000105(D23): 28943–28960

[13]

Flocke FWeinheimer  ASwanson A Roberts J Schmitt R Shertz S . On the measurement of PANs by gas chromatography and electron capture detection. Journal of Atmospheric Chemistry200552(1): 19–43

[14]

Zhang GMu  YLiu J Mellouki A . Direct and simultaneous determination of trace-level carbon tetrachloride, peroxyacetyl nitrate, and peroxypropionyl nitrate using gas chromatography-electron capture detection. Journal of Chromatography. A20121266(2012): 110–115

[15]

Zheng WFlocke  F MTyndall  G SSwanson  AOrlando J J Roberts J M Huey L G Tanner D J . Characterization of a thermal decomposition chemical ionization mass spectrometer for the measurement of peroxy acyl nitrates (PANs) in the atmosphere. Atmospheric Chemistry and Physics201111(13): 6529–6547

[16]

Hastie D RGray  JLangford V S Maclagan R G A R Milligan D B McEwan M J . Real-time measurement of peroxyacetyl nitrate using selected ion flow tube mass spectrometry. Rapid Communications in Mass Spectrometry201024(3): 343–348

[17]

Huey L G. Measurement of trace atmospheric species by chemical ionization mass spectrometry: speciation of reactive nitrogen and future directions. Mass Spectrometry Reviews200726(2): 166–184

[18]

Slusher D LHuey  L GTanner  D JFlocke  F MRoberts  J M. A thermal dissociation-chemical ionization mass spectrometry (TD-CIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide. Journal of Geophysical Research2004109(D19): D19315

[19]

Wolfe G MThornton  J AMcNeill  V FJaffe  D AReidmiller  DChand D Smith J Swartzendruber P Flocke F Zheng W . Influence of trans-Pacific pollution transport on acyl peroxy nitrate abundances and speciation at Mount Bachelor Observatory during INTEX-B. Atmospheric Chemistry and Physics20077(20): 5309–5325

[20]

Turnipseed A A Huey L G Nemitz E Stickel R Higgs J Tanner D J Slusher D L Sparks J P Flocke F Guenther A . Eddy covariance fluxes of peroxyacetyl nitrates (PANs) and NOy to a coniferous forest. Journal of Geophysical Research, D, Atmospheres2006111(D9): D09304

[21]

Wolfe G MThornton  J AYatavelli  R L NMcKay  MGoldstein A H LaFranchi B Min K E Cohen R C . Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN) above a Ponderosa pine forest. Atmospheric Chemistry and Physics20099(2): 615–634

[22]

LaFranchi BWolfe  GThornton J Harrold S Browne E Min KWooldridge  PGilman J Kuster W Goldan P de Gouw J A McKay M Goldstein A H Ren XMao  JCohen R C . Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007. Atmospheric Chemistry and Physics20099(19): 7623–7641

[23]

Roiger AAufmhoff  HStock P Arnold F Schlager H . An aircraft-borne chemical ionization- ion trap mass spectrometer (CI-ITMS) for fast PAN and PPN measurements. Atmospheric Measurement Techniques20114(2): 173–188

[24]

Phillips G JPouvesle  NThieser J Schuster G Axinte R Fischer H Williams J Lelieveld J Crowley J N . Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: first analysis of results in the boreal forest and implications for the measurement of PAN fluxes. Atmospheric Chemistry and Physics201313(3): 1129–1139

[25]

Wang ZShao  MChen L Tao MZhong  LChen D Fan MWang  YWang X . Space view of the decadal variation for typical air pollutants in the Pearl River Delta (PRD) region in China. Frontiers of Environmental Science & Engineering201610(5): 9

[26]

Xue LWang  TWang X Blake D R Gao JNie  WGao R Gao XXu  ZDing A Huang Y Lee SChen  YWang S Chai FZhang  QWang W . On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation. Environmental Pollution2014195(195): 39–47

[27]

Wang XWang  TYan C Tham Y J Xue LXu  ZZha Q . Large daytime signals of N2O5 and NO3 inferred at 62 amu in a TD-CIMS: chemical interference or a real atmospheric phenomenon? Atmospheric Measurement Techniques20147(1): 1–12

[28]

Zhang JWang  TDing A Zhou XXue  LPoon C Wu WGao  JZuo H Chen JZhang  X CFan  S J. Continuous measurement of peroxyacetyl nitrate (PAN) in suburban and remote areas of western China. Atmospheric Environment200943(2): 228–237

[29]

Xu ZWang  TXue L Louie P K K Luk C W Y Gao JWang  SChai F Wang W. Evaluating the uncertainties of thermal catalytic conversion in measuring atmospheric nitrogen dioxide at four differently polluted sites in China. Atmospheric Environment201376(2013): 221–226

[30]

Lee GJang  YLee H Han J S Kim K R Lee M. Characteristic behavior of peroxyacetyl nitrate (PAN) in Seoul megacity, Korea. Chemosphere200873(4): 619–628

[31]

Grosjean EGrosjean  DFraser M P Cass G R . Air quality model evaluation data for organics. 3. Peroxyacetyl nitrate and peroxypropionyl nitrate in Los Angeles air. Environmental Science & Technology199630(9): 2704–2714

[32]

Xu ZXue  LWang T Xia TGao  YLouie P K K Luk C W Y . Measurements of peroxyacetyl nitrate at a background site in the Pearl River delta region: production efficiency and regional transport. Aerosol and Air Quality Research201515(1): 833–841

[33]

Liu ZWang  YGu D Zhao CHuey  L GStickel  RLiao J Shao MZhu  TZeng L Liu S C Chang C C Amoroso A Costabile F . Evidence of reactive aromatics as a major source of peroxy acetyl nitrate over China. Environmental Science & Technology201044(18): 7017–7022

[34]

Zhang J M. Measurement of atmospheric peroxyacetyl nitrate (PAN) and the implications to photochemical pollution. Dissertation for the Master Degree. Hong Kong: The Hong Kong Polytechnic University2009

[35]

Wang BShao  MRoberts J Yang GYang  FHu M Zeng LZhang  YZhang J . Ground-based on-line measurements of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in the Pearl River Delta, China. International Journal of Environmental Analytical Chemistry201090(7): 548–559

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1832KB)

2614

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/