The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature

Qi Lin, Xin Xu, Lihua, Wang, Qian Chen, Jing Fang, Xiaodong Shen, Liping Lou, Guangming Tian

PDF(648 KB)
PDF(648 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 5. DOI: 10.1007/s11783-017-0924-8
RESEARCH ARTICLE
RESEARCH ARTICLE

The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature

Author information +
History +

Highlights

Pyrolysis altered the speciation and lability of Cu/Zn in animal manure.

The predominant species of Cu in two kinds of biochars differed with temperatures.

Temperatures didn’t change the predominant species of Zn in manures and biochars .

The bioaccessibility of Cu/Zn in biochars decreased with pyrolysis temperatures.

The leaching of Cu/Zn with SPLP decreased with pyrolysis temperatures.

Abstract

Biochars derived from animal manures may accumulate potentially toxic metals and cause a potential risk to ecosystem. The synchrotron-based X-ray spectroscopy, sequential fractionation schemes, bioaccessibility extraction and leaching procedure were performed on poultry and swine manure-derived biochars (denoted PB and SB, respectively) to evaluate the variance of speciation and activity of Cu and Zn as affected by the feedstock and pyrolysis temperature. The results showed that Cu speciation was dependent on the feedstock with Cu-citrate-like in swine manure and species resembling Cu-glutathione and CuO in poultry manure. Pyrolyzed products, however, had similar Cu speciation mainly with species resembling Cu-citrate, CuO and CuS/Cu2S. Organic bound Zn and Zn3(PO4)2-like species were dominant in both feedstock and biochars. Both Cu and Zn leaching with synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) decreased greatly with the rise of pyrolysis temperature, which were consistent with the sequential extraction results that pyrolysis converted Cu and Zn into less labile phases such as organic/sulfide and residual fractions. The potential bioaccessibility of Zn decreased for both the PB and SB, closely depending on the content of non-residual Zn. The bioaccessibility of Cu, however, increased for the SB prepared at 300°C–700°C, probably due to the increased proportion of CuO. Concerning the results of sequential fractionation schemes, bioaccessibility extraction and leaching procedure, pyrolysis at 500°C was suggested as means of reducing Cu/Zn lability and poultry manure was more suitable for pyrolysis treatment.

Graphical abstract

Keywords

Animal manure / Biochar / Metals / Molecular species / Pyrolysis

Cite this article

Download citation ▾
Qi Lin, Xin Xu, Lihua, Wang, Qian Chen, Jing Fang, Xiaodong Shen, Liping Lou, Guangming Tian. The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature. Front. Environ. Sci. Eng., 2017, 11(3): 5 https://doi.org/10.1007/s11783-017-0924-8

References

[1]
Yu X Y, Mu C L, Gu C, Liu C, Liu X J. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Chemosphere, 2011, 85(8): 1284–1289
CrossRef Google scholar
[2]
Galinato S P, Yoder J K, Granatstein D. The economic value of biochar in crop production and carbon sequestration. Energy Policy, 2011, 39(10): 6344–6350
CrossRef Google scholar
[3]
Bird M I, Wurster C M, de Paula Silva P H, Bass A M, de Nys R. Algal biochar production and properties. Bioresource Technology, 2011, 102(2): 1886–1891
CrossRef Google scholar
[4]
Roberts D A, Paul N A, Dworjanyn S A, Bird M I, Nys R D. Biochar from commercially cultivated seaweed for soil amelioration. Scientific Reports, 2015, 5: 9665
CrossRef Google scholar
[5]
Hale S E, Jensen J, Jakob L, Oleszczuk P, Hartnik T, Henriksen T, Okkenhaug G, Martinsen V, Cornelissen G. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates. Environmental Science & Technology, 2013, 47(15): 8674–8683
CrossRef Google scholar
[6]
Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. Biochar effects on soil biota: a review. Soil Biology & Biochemistry, 2011, 43(9): 1812–1836
CrossRef Google scholar
[7]
Shan J, Ji R, Yu Y J, Xie Z B, Yan X Y. Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil. Scientific Reports, 2015, 5: 16000; doi: 10.1038/srep 16000
[8]
Cao X D, Ma L N, Gao B, Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 2009, 43(9): 3285–3291
CrossRef Google scholar
[9]
Nag S K, Kookana R, Smith L, Krull E, Macdonald L M, Gill G. Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere, 2011, 84(11): 1572–1577
CrossRef Google scholar
[10]
Qian L B, Chen B L, Hu D F. Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environmental Science & Technology, 2013, 47(6): 2737–2745
CrossRef Google scholar
[11]
Uchimiya M, Klasson K T, Wartelle L H, Lima I M. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere, 2011, 82(10): 1431–1437
CrossRef Google scholar
[12]
Uchimiya M, Lima I M, Klasson K T, Chang S C, Wartelle L H, Rodgers J E. Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5538–5544
CrossRef Google scholar
[13]
Zhao L, Cao X D, Zheng W, John W S, Brajendra K S, Chen X. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1630–1636
CrossRef Google scholar
[14]
Nunes A A, Franca A S, Oliveira L S. Activated carbons from waste biomass: an alternative use for biodiesel production solid residues. Bioresource Technology, 2009, 100(5): 1786–1792
CrossRef Google scholar
[15]
Huang Y, Dong H, Shang B, Xin H, Zhu Z. Characterization of animal manure and cornstalk ashes as affected by incineration temperature. Applied Energy, 2011, 88(3): 947–952
CrossRef Google scholar
[16]
Uchimiya M, Bannon D I, Wartelle L H, Lima I M, Klasson K T. Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature. Journal of Agricultural and Food Chemistry, 2012, 60(20): 5035–5044
CrossRef Google scholar
[17]
Nicholson F A, Chambers B J, Williams J R, Unwin R J. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technology, 1999, 70(1): 23–31
CrossRef Google scholar
[18]
Cang L, Wang Y J, Zhou D M, Dong Y H. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. Journal of Environmental Sciences (China), 2004, 16: 371–374
[19]
Verheijen F G A, Jeffery S, Bastos A C, van der Velde M, Diafas I. Biochar application to soils —A critical scientific review of effects on soil properties, processes and functions. Office for the official publications of the European Communities, Luxembourg, 2009
[20]
Lin Q, Liang L, Wang L H, Ni Q L, Yang K, Zhang J, Chen D L, Yang J J, Shen X D. Roles of pyrolysis on availability, species and distribution of Cu and Zn in the swine manure: chemical extractions and high-energy synchrotron analyses. Chemosphere, 2013, 93(9): 2094–2100
CrossRef Google scholar
[21]
Ressler T. WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-windows. Journal of Synchrotron Radiation, 1998, 5(2): 118–122
CrossRef Google scholar
[22]
Paktunc D, Foster A, Heald S, Laflamme G. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 2004, 68(5): 969–983
CrossRef Google scholar
[23]
Shi J, Wu B, Yuan X, Cao Y Y, Chen X C, Chen Y X, Hu T D. An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant and Soil, 2008, 302(1-2): 163–174
CrossRef Google scholar
[24]
Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844–851
CrossRef Google scholar
[25]
Shinogi Y, Kanri Y. Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource Technology, 2003, 90(3): 241–247
CrossRef Google scholar
[26]
Kopittke P M, Menzies N W, de Jonge M D, McKenna B A, Donner E, Webb R I, Paterson D J, Howard D L, Ryan C G, Glover C J, Scheckel K G, Lombi E. In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of Cowpea. Plant Physiology, 2011, 156(2): 663–673
CrossRef Google scholar
[27]
Faridullah Irshad M, Yamamoto S, Honna T, Eneji A E. Characterization of trace elements in chicken and duck litter ash. Waste Management (New York, N.Y.), 2009, 29(1): 265–271
CrossRef Google scholar
[28]
Chen C Y, Wang H P, Wei Y L, Jou C J G, Huang Y C. Observations of nano copper in waste heat boiler fly ashes. Radiation Physics and Chemistry, 2006, 75(11): 1913–1915
CrossRef Google scholar
[29]
Legros S, Doelsch E, Masion A, Rose J, Borshneck D, Proux O, Hazemann J L, Saint-Macary H, Bottero J Y. Combining size fractionation, scanning electron microscopy, and X-ray absorption spectroscopy to probe zinc speciation in pig slurry. Journal of Environmental Quality, 2010, 39(2): 531–540
CrossRef Google scholar
[30]
Li A F, Zhang M K. Nutrient substances and pollutant elements in chicken manure from intensive poultry farms. Journal of Ecology and Rural Environment, 2009, 25: 64–67 (in Chinese)
[31]
Dubey B, Townsend T. Arsenic and lead leaching from the waste derived fertilizer ironite. Environmental Science & Technology, 2004, 38(20): 5400–5404
CrossRef Google scholar
[32]
Hao X Z, Zhou D M, Chen H M, Dong Y H. Leaching of copper and zinc in a garden soil receiving poultry and livestock manures from intensive farming. Pedosphere, 2008, 18(1): 69–76
CrossRef Google scholar
[33]
Lin Q, Xu X, Bao Q B, Oh K, Chen D L, Zhang L J, Shen X. Influence of water-dispersible colloids from organic manure on the mechanism of metal transport in historically contaminated soils: coupling colloid fractionation with high-energy synchrotron analysis. Journal of Soils and Sediments, 2016, 16(2): 349–359
CrossRef Google scholar
[34]
Smith E, Kempson I M, Juhasz A L, Weber J, Rofe A, Gancarz D, Naidu R, McLaren R G, Gäfe M. In vivo–in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils. Environmental Science & Technology, 2011, 45(14): 6145–6152
CrossRef Google scholar
[35]
Rodrigues S M, Cruz N, Coelho C, Henriques B, Carvalho L, Duarte A C, Pereira E, Römkens P F A M. Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept. Environmental Pollution, 2013, 183: 234–242
CrossRef Google scholar

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (Grant Nos. 41371320, 21677123 and 41371447). We thank the staff members from the beamline (4W1B, 1W1B) at the Beijing Synchrotron Radiation Facility (BSRF), and beamline (15U) at the Shanghai Synchrotron Radiation Facility (SSRF) for their support for XAS study.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11783-017-0924-8 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer–Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(648 KB)

Accesses

Citations

Detail

Sections
Recommended

/