The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature

Qi Lin , Xin Xu , Lihua, Wang , Qian Chen , Jing Fang , Xiaodong Shen , Liping Lou , Guangming Tian

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 5

PDF (648KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 5 DOI: 10.1007/s11783-017-0924-8
RESEARCH ARTICLE
RESEARCH ARTICLE

The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature

Author information +
History +
PDF (648KB)

Abstract

Pyrolysis altered the speciation and lability of Cu/Zn in animal manure.

The predominant species of Cu in two kinds of biochars differed with temperatures.

Temperatures didn’t change the predominant species of Zn in manures and biochars .

The bioaccessibility of Cu/Zn in biochars decreased with pyrolysis temperatures.

The leaching of Cu/Zn with SPLP decreased with pyrolysis temperatures.

Biochars derived from animal manures may accumulate potentially toxic metals and cause a potential risk to ecosystem. The synchrotron-based X-ray spectroscopy, sequential fractionation schemes, bioaccessibility extraction and leaching procedure were performed on poultry and swine manure-derived biochars (denoted PB and SB, respectively) to evaluate the variance of speciation and activity of Cu and Zn as affected by the feedstock and pyrolysis temperature. The results showed that Cu speciation was dependent on the feedstock with Cu-citrate-like in swine manure and species resembling Cu-glutathione and CuO in poultry manure. Pyrolyzed products, however, had similar Cu speciation mainly with species resembling Cu-citrate, CuO and CuS/Cu2S. Organic bound Zn and Zn3(PO4)2-like species were dominant in both feedstock and biochars. Both Cu and Zn leaching with synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) decreased greatly with the rise of pyrolysis temperature, which were consistent with the sequential extraction results that pyrolysis converted Cu and Zn into less labile phases such as organic/sulfide and residual fractions. The potential bioaccessibility of Zn decreased for both the PB and SB, closely depending on the content of non-residual Zn. The bioaccessibility of Cu, however, increased for the SB prepared at 300°C–700°C, probably due to the increased proportion of CuO. Concerning the results of sequential fractionation schemes, bioaccessibility extraction and leaching procedure, pyrolysis at 500°C was suggested as means of reducing Cu/Zn lability and poultry manure was more suitable for pyrolysis treatment.

Graphical abstract

Keywords

Animal manure / Biochar / Metals / Molecular species / Pyrolysis

Cite this article

Download citation ▾
Qi Lin, Xin Xu, Lihua, Wang, Qian Chen, Jing Fang, Xiaodong Shen, Liping Lou, Guangming Tian. The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature. Front. Environ. Sci. Eng., 2017, 11(3): 5 DOI:10.1007/s11783-017-0924-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu X YMu C LGu CLiu CLiu X J. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Chemosphere201185(8): 1284–1289

[2]

Galinato S PYoder J KGranatstein D. The economic value of biochar in crop production and carbon sequestration. Energy Policy201139(10): 6344–6350

[3]

Bird M IWurster C Mde Paula Silva P HBass A Mde Nys R. Algal biochar production and properties. Bioresource Technology2011102(2): 1886–1891

[4]

Roberts D APaul N ADworjanyn S ABird M INys R D. Biochar from commercially cultivated seaweed for soil amelioration. Scientific Reports20155: 9665

[5]

Hale S EJensen JJakob LOleszczuk PHartnik THenriksen TOkkenhaug GMartinsen VCornelissen G. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates. Environmental Science & Technology201347(15): 8674–8683

[6]

Lehmann JRillig M CThies JMasiello C AHockaday W CCrowley D. Biochar effects on soil biota: a review. Soil Biology & Biochemistry201143(9): 1812–1836

[7]

Shan JJi RYu Y JXie Z BYan X Y. Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil. Scientific Reports20155: 16000; doi: 10.1038/srep 16000

[8]

Cao X DMa L NGao BHarris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology200943(9): 3285–3291

[9]

Nag S KKookana RSmith LKrull EMacdonald L MGill G. Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere201184(11): 1572–1577

[10]

Qian L BChen B LHu D F. Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environmental Science & Technology201347(6): 2737–2745

[11]

Uchimiya MKlasson K TWartelle L HLima I M. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere201182(10): 1431–1437

[12]

Uchimiya MLima I MKlasson K TChang S CWartelle L HRodgers J E. Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II, and Pb-II) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry201058(9): 5538–5544

[13]

Zhao LCao X DZheng WJohn W SBrajendra K SChen X. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustainable Chemistry & Engineering20164(3): 1630–1636

[14]

Nunes A AFranca A SOliveira L S. Activated carbons from waste biomass: an alternative use for biodiesel production solid residues. Bioresource Technology2009100(5): 1786–1792

[15]

Huang YDong HShang BXin HZhu Z. Characterization of animal manure and cornstalk ashes as affected by incineration temperature. Applied Energy201188(3): 947–952

[16]

Uchimiya MBannon D IWartelle L HLima I MKlasson K T. Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature. Journal of Agricultural and Food Chemistry201260(20): 5035–5044

[17]

Nicholson F AChambers B JWilliams J RUnwin R J. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technology199970(1): 23–31

[18]

Cang LWang Y JZhou D MDong Y H. Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. Journal of Environmental Sciences (China)200416: 371–374

[19]

Verheijen F G AJeffery SBastos A Cvan der Velde MDiafas I. Biochar application to soils —A critical scientific review of effects on soil properties, processes and functions. Office for the official publications of the European Communities, Luxembourg2009

[20]

Lin QLiang LWang L HNi Q LYang KZhang JChen D LYang J JShen X D. Roles of pyrolysis on availability, species and distribution of Cu and Zn in the swine manure: chemical extractions and high-energy synchrotron analyses. Chemosphere201393(9): 2094–2100

[21]

Ressler T. WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-windows. Journal of Synchrotron Radiation19985(2): 118–122

[22]

Paktunc DFoster AHeald SLaflamme G. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta200468(5): 969–983

[23]

Shi JWu BYuan XCao Y YChen X CChen Y XHu T D. An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant and Soil2008302(1-2): 163–174

[24]

Tessier ACampbell P G CBisson M. Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry197951(7): 844–851

[25]

Shinogi YKanri Y. Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource Technology200390(3): 241–247

[26]

Kopittke P MMenzies N Wde Jonge M DMcKenna B ADonner EWebb R IPaterson D JHoward D LRyan C GGlover C JScheckel K GLombi E. In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of Cowpea. Plant Physiology2011156(2): 663–673

[27]

Faridullah Irshad MYamamoto SHonna TEneji A E. Characterization of trace elements in chicken and duck litter ash. Waste Management (New York, N.Y.)200929(1): 265–271

[28]

Chen C YWang H PWei Y LJou C J GHuang Y C. Observations of nano copper in waste heat boiler fly ashes. Radiation Physics and Chemistry200675(11): 1913–1915

[29]

Legros SDoelsch EMasion ARose JBorshneck DProux OHazemann J LSaint-Macary HBottero J Y. Combining size fractionation, scanning electron microscopy, and X-ray absorption spectroscopy to probe zinc speciation in pig slurry. Journal of Environmental Quality201039(2): 531–540

[30]

Li A FZhang M K. Nutrient substances and pollutant elements in chicken manure from intensive poultry farms. Journal of Ecology and Rural Environment200925: 64–67 (in Chinese)

[31]

Dubey BTownsend T. Arsenic and lead leaching from the waste derived fertilizer ironite. Environmental Science & Technology200438(20): 5400–5404

[32]

Hao X ZZhou D MChen H MDong Y H. Leaching of copper and zinc in a garden soil receiving poultry and livestock manures from intensive farming. Pedosphere200818(1): 69–76

[33]

Lin QXu XBao Q BOh KChen D LZhang L JShen X. Influence of water-dispersible colloids from organic manure on the mechanism of metal transport in historically contaminated soils: coupling colloid fractionation with high-energy synchrotron analysis. Journal of Soils and Sediments201616(2): 349–359

[34]

Smith EKempson I MJuhasz A LWeber JRofe AGancarz DNaidu RMcLaren R GGäfe M. In vivo–in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated periurban soils. Environmental Science & Technology201145(14): 6145–6152

[35]

Rodrigues S MCruz NCoelho CHenriques BCarvalho LDuarte A CPereira ERömkens P F A M. Risk assessment for Cd, Cu, Pb and Zn in urban soils: chemical availability as the central concept. Environmental Pollution2013183: 234–242

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (648KB)

Supplementary files

FSE-17015-OF-LQ_suppl_1

3036

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/