Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs

Conor Dennehy, Peadar G. Lawlor, Gillian E. Gardiner, Yan Jiang, Paul Cormican, Matthew S. McCabe, Xinmin Zhan

PDF(491 KB)
PDF(491 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 4. DOI: 10.1007/s11783-017-0923-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs

Author information +
History +

Highlights

Reducing HRT to 10.5 days caused shifts in acidogenic population & VFA accumulation.

VFA-oxidizing bacteria were key in process stability when HRT was 10.5 days.

Reducing HRT to 10.5 days reduced substrate utilization.

Pathogen removal was not achieved when HRT was<21 days.

Abstract

This study assessed the effects of reducing hydraulic retention times (HRTs) from 21 days to 10.5 days when anaerobically co-digesting pig manure and food waste. Continuously stirred tank reactors of 3.75 L working volume were operated in triplicate at 42°C. Digester HRT was progressively decreased from 21 to 15 days to 10.5 days, with an associated increase in organic loading rate (OLR) from 3.1 kg volatile solids (VS)·m3·day1 to 5.1 kg VS·m3·day1 to 7.25 kg VS·m3·day1. Reducing HRT from 21 days to 15 days caused a decrease in specific methane yields and VS removal rates. Operation at a HRT of 10.5 days initially resulted in the accumulation of isobutyric acid in each reactor. High throughput 16S rRNA gene sequencing revealed that this increase coincided with a shift in acidogenic bacterial populations, which most likely resulted in the increased isobutyric acid concentrations. This may in turn have caused the increase in relative abundance of Clocamonaceae bacteria, which syntrophically degrade non-acetate volatile fatty acids (VFAs) into H2 and CO2. This, along with the increase in abundance of other syntrophic VFA oxidizers, such as Spiorchatetes, suggests that VFA oxidation plays a role in digester operation at low HRTs. Reducing the HRT to below 21 days compromised the ability of the anaerobic digestion system to reduce enteric indicator organism counts below regulatory limits.

Graphical abstract

Keywords

Biogas / Sequencing / Clocamonaceae / Spiorchatetes / Isobutyrate / Biosafety

Cite this article

Download citation ▾
Conor Dennehy, Peadar G. Lawlor, Gillian E. Gardiner, Yan Jiang, Paul Cormican, Matthew S. McCabe, Xinmin Zhan. Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs. Front. Environ. Sci. Eng., 2017, 11(3): 4 https://doi.org/10.1007/s11783-017-0923-9

References

[1]
Xie S, Wu G, Lawlor P G, Frost J P, Zhan X. Methane production from anaerobic co-digestion of the separated solid fraction of pig manure with dried grass silage. Bioresource Technology, 2012, 104: 289–297
CrossRef Google scholar
[2]
Sundberg C, Al-Soud W A, Larsson M, Alm E, Yekta S S, Svensson B H, Sørensen S J, Karlsson A. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiology Ecology, 2013, 85(3): 612–626
CrossRef Google scholar
[3]
Dennehy C, Lawlor P G, Croize T, Jiang Y, Morrison L, Gardiner G E, Zhan X. Synergism and effect of high initial volatile fatty acid concentrations during food waste and pig manure anaerobic co-digestion. Waste Management (New York, N.Y.), 2016, 56: 173–180
CrossRef Google scholar
[4]
Batstone D, Tait S, Starrenburg D. Estimation of hydrolysis parameters in full-scale anerobic digesters. Biotechnology and Bioengineering, 2009, 102(5): 1513–1520
CrossRef Google scholar
[5]
Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Puhler A, Schluter A. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnology for Biofuels, 2015, 8(1): 14–20
CrossRef Google scholar
[6]
Alsouleman K, Linke B, Klang J, Klocke M, Krakat N, Theuerl S. Reorganisation of a mesophilic biogas microbiome as response to a stepwise increase of ammonium nitrogen induced by poultry manure supply. Bioresource Technology, 2016, 208: 200–204
CrossRef Google scholar
[7]
Lebuhn M, Hanreich A, Klocke M, Schlüter A, Bauer C, Pérez C M. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe, 2014, 29: 10–21
CrossRef Google scholar
[8]
De Vrieze J, Saunders A M, He Y, Fang J, Nielsen P H, Verstraete W, Boon N. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Research, 2015, 75: 312–323
CrossRef Google scholar
[9]
De Vrieze J, Raport L, Roume H, Vilchez-Vargas R, Jáuregui R, Pieper D H, Boon N. The full-scale anaerobic digestion microbiome is represented by specific marker populations. Water Research, 2016, 104: 101–110
CrossRef Google scholar
[10]
McCutcheon G. A study of the dry matter and nutrient content of pig slurry. Dissertation for Master Degree. Dublin, Ireland: University College Dublin, 1997
[11]
Browne J D, Allen E, Murphy J D. Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation. Applied Energy, 2014, 128: 307–314
CrossRef Google scholar
[12]
Anthonisen A, Loehr R, Prakasam T, Srinath E. Inhibition of nitrification by ammonia and nitrous acid. Journal- Water Pollution Control Federation, 1976, 48(5): 835–852
[13]
APHA. Standard Methods for the Examination of Water and Wastewater. Washington D. C.: APHA-AWWA-WEF, 1998
[14]
Batstone D J, Rodríguez J.Modelling Anaerobic Digestion Processes. In; Fang H P, Zhang T, eds. Anaerobic Biotechnology: Environmental Protection and Resource Recovery. London: Imperial College Press, 2015, 133–160
[15]
International Organization of Standardization. Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Detection of Salmonella spp. Amendment 1: Annex D: Detection of Salmonella spp. in Animal Faeces and in Environmental Samples from the Primary Production Stage. Geneva, Switzerland: International Organization for Standardization, 2007
[16]
Caporaso J G, Lauber C L, Walters W A, Berg-Lyons D, Huntley J, Fierer N, Owens S M, Betley J, Fraser L, Bauer M, Gormley N, Gilbert J A, Smith G, Knight R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, 2012, 6(8): 1621–1624
CrossRef Google scholar
[17]
DeSantis T Z, Hugenholtz P, Larsen N, Rojas M, Brodie E L, Keller K, Huber T, Dalevi D, Hu P, Andersen G L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 2006, 72(7): 5069–5072
CrossRef Google scholar
[18]
Fouhy F, Guinane C M, Hussey S, Wall R, Ryan C A, Dempsey E M, Murphy B, Ross R P, Fitzgerald G F, Stanton C, Cotter P D. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrobial Agents and Chemotherapy, 2012, 56(11): 5811–5820
CrossRef Google scholar
[19]
Vázquez-Baeza Y, PirrungM, GonzalezA, KnightR.EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience, 2013, 2(1): 16–22 doi:10.1186/2047-217X-2-16
[20]
Noike T, Endo G, Chang J E, Yaguchi J I, Matsumoto J I. Characteristics of carbohydrate degradation and the rate‐limiting step in anaerobic digestion. Biotechnology and Bioengineering, 1985, 27(10): 1482–1489
CrossRef Google scholar
[21]
Franke-Whittle I H, Walter A, Ebner C, Insam H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Management (New York, N.Y.), 2014, 34(11): 2080–2089
CrossRef Google scholar
[22]
Maspolim Y, Zhou Y, Guo C, Xiao K, Ng W J. Comparison of single-stage and two-phase anaerobic sludge digestion systems – Performance and microbial community dynamics. Chemosphere, 2015, 140: 54–62
CrossRef Google scholar
[23]
De Vrieze J, Gildemyn S, Vilchez-Vargas R, Jauregui R, Pieper D H, Verstraete W, Boon N. Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Applied Microbiology and Biotechnology, 2015, 99(1): 189–199
CrossRef Google scholar
[24]
Yamada T, Sekiguchi Y. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi “Subphylum I” with natural and biotechnological relevance. Microbes and Environments, 2009, 24(3): 205–216 
CrossRef Google scholar
[25]
Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME Journal, 2009, 3(6): 700–714
CrossRef Google scholar
[26]
Ganidi N, Tyrrel S, Cartmell E. Anaerobic digestion foaming causes – A review. Bioresource Technology, 2009, 100(23): 5546–5554
CrossRef Google scholar
[27]
Holdeman L V, Moore W E C. New genus, coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. International Journal of Systematic and Evolutionary Microbiology, 1974, 24(2): 260–277
[28]
Qiu Y L, Kuang X Z, Shi X S, Yuan X Z, Guo R B. Paludibacter jiangxiensis sp. nov., a strictly anaerobic, propionate-producing bacterium isolated from rice paddy field. Archives of Microbiology, 2014, 196(3): 149–155
CrossRef Google scholar
[29]
Wu W M, Jain M K, Hickey R F, Zeikus J G. Perturbation of syntrophic isobutyrate and butyrate degradation with formate and hydrogen. Biotechnology and Bioengineering, 1996, 52(3): 404–411
CrossRef Google scholar
[30]
Wu W M, Jain M K, Zeikus J G. Anaerobic degradation of normal-and branched-chain fatty acids with four or more carbons to methane by a syntrophic methanogenic triculture. Applied and Environmental Microbiology, 1994, 60(7): 2220–2226
[31]
Hagen L H, Vivekanand V, Linjordet R, Pope P B, Eijsink V G H, Horn S J. Microbial community structure and dynamics during co-digestion of whey permeate and cow manure in continuous stirred tank reactor systems. Bioresource Technology, 2014, 171: 350–359
CrossRef Google scholar
[32]
Lee S H, Park J H, Kang H J, Lee Y H, Lee T J, Park H D. Distribution and abundance of Spirochaetes in full-scale anaerobic digesters. Bioresource Technology, 2013, 145: 25–32
CrossRef Google scholar
[33]
Sun L, Müller B, Westerholm M, Schnürer A. Syntrophic acetate oxidation in industrial CSTR biogas digesters. Journal of Biotechnology, 2014, 171: 39–44
CrossRef Google scholar
[34]
Sahlström L. A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresource Technology, 2003, 87(2): 161–166
CrossRef Google scholar
[35]
Chen Y, Fu B, Wang Y, Jiang Q, Liu H. Reactor performance and bacterial pathogen removal in response to sludge retention time in a mesophilic anaerobic digester treating sewage sludge. Bioresource Technology, 2012, 106: 20–26
CrossRef Google scholar

Acknowledgements

Funding for this study was provided by the Green Farm project supported by a Science Foundation Ireland Investigator Project Award (Ref: 12/IP/1519).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11783-017-0923-9 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(491 KB)

Accesses

Citations

Detail

Sections
Recommended

/