NO oxidation over Co-La catalysts and NOx reduction in compact SCR

Tiejun Zhang , Jian Li , Hong He , Qianqian Song , Quanming Liang

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 4

PDF (1049KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 4 DOI: 10.1007/s11783-017-0906-x
RESEARCH ARTICLE
RESEARCH ARTICLE

NO oxidation over Co-La catalysts and NOx reduction in compact SCR

Author information +
History +
PDF (1049KB)

Abstract

The Co-La catalyst (pH= 1) exhibited maximum NO conversion of 43% at 180°C.

Acid modified catalyst enhanced the resistance to SO2.

The formed sulfates may block the pore structure of the catalyst.

The NO conversion of compact SCR was 91% at 180°C at the highest space velocity.

A series of Co-La catalysts were prepared using the wet impregnation method and the synthesis of catalysts were modified by controlling pH with the addition of ammonium hydroxide or oxalic solution. All the catalysts were systematically investigated for NO oxidation and SO2 resistance in a fixed bed reactor and were characterized by Brunanuer–Emmett–Teller (BET) method, Fourier Transform infrared spectroscopy (FTIR), X–ray diffraction (XRD), Thermogravimetric (TG) and Ion Chromatography (IC). Among the catalysts, the one synthesized at pH= 1 exhibited the maximum NO conversion of 43% at 180°C. The activity of the catalyst was significantly suppressed by the existence of SO2 (300 ppm) at 220°C. Deactivation may have been associated with the generation of cobalt sulfate, and the SO2 adsorption quantity of the catalyst might also have effected sulfur resistance. In the case of the compact selective catalytic reduction (SCR), the activity increased from 74% to 91% at the highest gas hourly space velocity (GHSV) of 300000 h1 when the NO catalyst maintained the highest activity, in excess of 50% more than that of the standard SCR.

Graphical abstract

Keywords

NO catalytic oxidation / pH effect / Low temperature / Sulfur dioxide / High space velocity / SCR

Cite this article

Download citation ▾
Tiejun Zhang, Jian Li, Hong He, Qianqian Song, Quanming Liang. NO oxidation over Co-La catalysts and NOx reduction in compact SCR. Front. Environ. Sci. Eng., 2017, 11(2): 4 DOI:10.1007/s11783-017-0906-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jin Y Y, Li Y Y, Liu F Q. Combustion effects and emission characteristics of SO2, CO, NOx and heavy metals during co-combustion of coal and dewatered sludge. Frontiers of Environmental Science & Engineering, 2016, 10(1): 201–210

[2]

Li J H, Peng Y, Chang H Z, Li X, Crittenden J C, Hao J M. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources. Frontiers of Environmental Science & Engineering, 2016, 10(3): 413–427

[3]

Koebel M, Madia G, Elsener M. Selective catalytic reduction of NO and NO2 at low temperatures. Catalysis Today, 2002, 73(3–4): 239–247

[4]

Irfan M F, Goo J H, Kim S D. Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process. Applied Catalysis B: Environmental, 2008, 78(3–4): 267–274

[5]

Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M. The chemistry of the NO/NO2–NH3 “fast” SCR reaction over Fe-ZSM5 investigated by transient reaction analysis. Journal of Catalysis, 2008, 256(2): 312–322

[6]

Li K, Tang X, Yi H, Ning P, Song J, Wang J. Mechanism of catalytic oxidation of NO over Mn-Co-Ce-Ox catalysts with the aid of nonthermal plasma at low temperature. Industrial & Engineering Chemistry Research, 2011, 50(19): 11023–11028

[7]

Yung M M, Holmgreen E M, Ozkan U S. Cobalt-based catalysts supported on titania and zirconia for the oxidation of nitric oxide to nitrogen dioxide. Journal of Catalysis, 2007, 247(2): 356–367

[8]

Dawody J, Skoglundh M, Fridell E. The effect of metal oxide additives (WO3, MoO3, V2O5, Ga2O3) on the oxidation of NO and SO2 over Pt/Al2O3 and Pt/BaO/Al2O3 catalysts. Journal of Molecular Catalysis A Chemical, 2004, 209(1–2): 215–225

[9]

Li L D, Shen Q, Cheng J, Hao Z P. Catalytic oxidation of NO over TiO2 supported platinum clusters I. Preparation, characterization and catalytic properties. Applied Catalysis B: Environmental, 2010, 93(3–4): 259–266

[10]

Li L D, Shen Q, Cheng J, Hao Z P. Catalytic oxidation of NO over TiO2 supported platinum clusters. II: Mechanism study by in situ FTIR spectra. Catalysis Today, 2010, 158(3–4): 361–369

[11]

Zhao B H, Ran R, Wu X D, Weng D, Wu X Y, Huang C Y. Comparative study of Mn/TiO2 and Mn/ZrO2 catalysts for NO oxidation. Catalysis Communications, 2014, 56(1): 36–40

[12]

Ren Z, Guo Y B, Zhang Z H, Liu C H, Gao P X. Nonprecious catalytic honeycombs structured with three dimensional hierarchical Co3O4 nano-arrays for high performance nitric oxide oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(34): 9897–9906

[13]

Lu W Z, Zhao X G, Wang H, Xiao W D. Catalytic oxidation of NO. Chinese Journal of Catalysis, 2000, 21(5): 423–427 (in Chinese)

[14]

Zhang J X, Zhang S L, Cai W, Zhong Q. The characterization of CrCe-doped on TiO2-pillared clay nanocomposites for NO oxidation and the promotion effect of CeOx. Applied Surface Science, 2013, 268: 535–540

[15]

Guo R T, Zhen W L, Pan W G, Zhou Y, Hong J N, Xu H J, Jin Q, Ding C G, Guo S Y. Effect of Cu doping on the SCR activity of CeO2 catalyst prepared by citric acid method. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1577–1580

[16]

Peng L L, Huang Y, Li J G, Zhang J F. Catalytic performance of CoOx -CeOx /ZrO2 in NO oxidation and its resistance against SO2. Journal of Fuel Chemistry and Technology–China, 2012, 40(11): 1377–1383 (in Chinese)

[17]

Jang B W L, Spivey J J, Kung M C, Kung H H. Low-temperature NOx removal for flue gas cleanup. Energy & Fuels, 1997, 11(2): 299–306

[18]

Shang D H, Zhong Q, Cai W.High performance of NO oxidation over Ce–Co–Ti catalyst: the interaction between Ce and Co. Applied Surface Science, 2015, 325: 211–216

[19]

Guillén-Hurtado N, Atribak I, Bueno-López A, García-García A. Influence of the cerium precursor on the physico-chemical features and NO to NO2 oxidation activity of ceria and ceria–zirconia catalysts. Journal of Molecular Catalysis A Chemical, 2010, 323(1–2): 52–58

[20]

Sun Y, Huang Y, Zhao W, Su Q, Zhang J, Yang L. Research on catalytic performance of supported perovskite catalyst for NO oxidation and resistance to SO2 poisoning. Journal of Fuel Chemistry and Technology–China, 2014, 42(10): 1246–1252 (in Chinese)

[21]

Waqif M, Bachelier J, Saur O, Lavalley J C. Acidic properties and stability of sulfate-promoted metal oxides. Journal of Molecular Catalysis, 1992, 72(1): 127–138

[22]

Lee Y W, Kim H J, Park J W, Choi B U, Choi D K, Park J W. Adsorption and reaction behavior for the simultaneous adsorption of NO–NO2 and SO2 on activated carbon impregnated with KOH. Carbon, 2003, 41(10): 1881–1888

[23]

Yamamoto A, Teramura K, Hosokawa S, Tanaka T. Effects of SO2 on selective catalytic reduction of NO with NH3 over a TiO2 photocatalyst. Science and Technology of Advanced Materials, 2015, 16(2): 024901

[24]

Chilukoti S, Gao F, Anderson B G, Niemantsverdriet J W H, Garland M. Pure component spectral analysis of surface adsorbed species measured under real conditions. BTEM-DRIFTS study of CO and NO reaction over a Pd/gamma-Al2O3 catalyst. Physical Chemistry Chemical Physics, 2008, 10(36): 5510–5520

[25]

Ruggeri M P, Grossale A, Nova I, Tronconi E, Jirglova H, Sobalik Z. FTIR in situ mechanistic study of the NH3 NO/NO2 “Fast SCR” reaction over a commercial Fe-ZSM-5 catalyst. Catalysis Today, 2012, 184(1): 107–114

[26]

Li L, Qu L, Cheng J, Li J, Hao Z. Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts. Applied Catalysis B: Environmental, 2009, 88(1–2): 224–231

[27]

Zhao Y, Hao R, Wang T, Yang C. Follow-up research for integrative process of pre-oxidation and post-absorption cleaning flue gas: Absorption of NO2, NO and SO2. Chemical Engineering Journal, 2015, 273: 55–65

[28]

Waqif M, Pieplu A, Saur O, Lavaleey J C, Blanchard G. Use of CeO2-Al2O3 as a SO2 sorbent. Solid State Ionics, 1997, 95(1–2): 163–167

[29]

Speight J G. Lange’s Handbook of Chemistry (6th edition). New York: McGraw-Hill Education, 2004

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1049KB)

3295

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/