Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review

Feng Wang, Xueqiu Zhao, Cynthia Gerlein-Safdi, Yue Mu, Dongfang Wang, Qi Lu

PDF(266 KB)
PDF(266 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (1) : 13. DOI: 10.1007/s11783-017-0904-z
REVIEW ARTICLE
REVIEW ARTICLE

Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review

Author information +
History +

Highlights

he main sources of sand and dust lie in deserts and semi-deserts, such as the Sahara Desert in Africa and the deserts in Central and Western Asia.

Dust aerosols directly alter the radiation balance of the earth-atmosphere system by scattering and absorbing short- and long-wave radiation.

Dust aerosols indirectly alter the albedo and rainfall patterns by acting as cloud condensation nuclei (CCN) or ice nuclei (IN).

Dust aerosols mitigate global warming by altering the amount of CO2 absorbed by the marine phytoplankton.

Abstract

Dust and Sand Storms (DSS) originating in deserts in arid and semi-arid regions are events raising global public concern. An important component of atmospheric aerosols, dust aerosols play a key role in climatic and environmental changes at the regional and the global scale. Deserts and semi-deserts are the main source of dust and sand, but regions that undergo vegetation deterioration and desertification due to climate change and human activities also contribute significantly to DSS. Dust aerosols are mainly composed of dust particles with an average diameter of 2 mm, which can be transported over thousands of kilometers. Dust aerosols influence the radiation budget of the earth-atmosphere system by scattering solar short-wave radiation and absorbing surface long-wave radiation. They can also change albedo and rainfall patterns because they can act as cloud condensation nuclei (CCN) or ice nuclei (IN). Dust deposition is an important source of both marine nutrients and contaminants. Dust aerosols that enter marine ecosystems after long-distance transport influence phytoplankton biomass in the oceans, and thus global climate by altering the amount of CO2 absorbed by phytoplankton. In addition, the carbonates carried by dust aerosols are an important source of carbon for the alkaline carbon pool, which can buffer atmospheric acidity and increase the alkalinity of seawater. DSS have both positive and negative impacts on human society: they can exert adverse impacts on human’s living environment, but can also contribute to the mitigation of global warming and the reduction of atmospheric acidity.

Keywords

Dust and sand storm / Climate effects / Radiative forcing / Cloud condensation nuclei / Precipitation / Iron fertilizer

Cite this article

Download citation ▾
Feng Wang, Xueqiu Zhao, Cynthia Gerlein-Safdi, Yue Mu, Dongfang Wang, Qi Lu. Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review. Front. Environ. Sci. Eng., 2017, 11(1): 13 https://doi.org/10.1007/s11783-017-0904-z

References

[1]
UNEP. WMO, UNCCD. Global Assessment of Sand and Dust Storms — WMO SDS-WAS. United Nations Environment Programme. Nairobi, 2016
[2]
Xi X, Sokolik I N. Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia. Journal of Geophysical Research, D, Atmospheres, 2016, 121(20): 12270–12281
CrossRef Google scholar
[3]
Chadwick O A, Derry L A, Vitousek P M, Huebert B J, Hedin L O. Changing sources of nutrients during four million years of ecosystem development. Nature, 1999, 397(6719): 491–497
CrossRef Google scholar
[4]
Yu H, Remer L A, Chin M, Bian H, Tan Q, Yuan T, Zhang Y. Aerosols from overseas rival domestic emissions over North America. American Scientist, 2012, 337(6094): 566–569
CrossRef Pubmed Google scholar
[5]
Satheesh S, Krishnamoorthy K. Radiative effects of natural aerosols: a review. Atmospheric Environment, 2005, 39(11): 2089–2110
CrossRef Google scholar
[6]
Lambert F, Kug J S, Park R J, Mahowald N, Winckler G, Abe-Ouchi A, O’ishi R, Takemura T, Lee J H. The role of mineral-dust aerosols in polar temperature amplification. Nature Climate Change, 2013, 3(5): 487–491
CrossRef Google scholar
[7]
Haywood J, Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Reviews of Geophysics, 2000, 38(4): 513–543
CrossRef Google scholar
[8]
Anderson T L, Charlson R J, Schwartz S E, Knutti R, Boucher O, Rodhe H, Heintzenberg J. Atmospheric science. Climate forcing by aerosol—A hazy picture. Science, 2003, 300(5622): 1103–1104
CrossRef Pubmed Google scholar
[9]
Pósfai M, Buseck P R. Nature and climate effects of individual tropospheric aerosol particles. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 17–43
CrossRef Google scholar
[10]
Creamean J M, Suski K J, Rosenfeld D, Cazorla A, DeMott P J, Sullivan R C, White A B, Ralph F M, Minnis P, Comstock J M, Tomlinson J M, Prather K A. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 2013, 339(6127): 1572–1578
CrossRef Pubmed Google scholar
[11]
Falkowski P G, Barber R T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science, 1998, 281(5374): 200–207
CrossRef Pubmed Google scholar
[12]
Prospero J M, Bullard J E, Hodgkins R. High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science, 2012, 335(6072): 1078–1082
CrossRef Pubmed Google scholar
[13]
Lamy F, Gersonde R, Winckler G, Esper O, Jaeschke A, Kuhn G, Ullermann J, Martinez-Garcia A, Lambert F, Kilian R. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science, 2014, 343(6169): 403–407
CrossRef Pubmed Google scholar
[14]
Cao J J, Lee S C, Zhang X Y, Chow J C, An Z S, Ho K F, Watson J G, Fung K, Wang Y Q, Shen Z X. Characterization of airborne carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance. Journal of Geophysical Research, D, Atmospheres, 2005, 110(D3): D03203
CrossRef Google scholar
[15]
Broxton P D, Zeng X, Scheftic W, Troch P A. A MODIS-Based Global 1-km maximum green vegetation fraction dataset. Journal of Applied Meteorology and Climatology, 2014, 53(8): 1996–2004 doi:10.1175/JAMC-D-13-0356.1
[16]
Ginoux P, Prospero J M, Gill T E, Hsu N C, Zhao M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 2012, 50(3): RG3005
CrossRef Google scholar
[17]
Prospero J M, Ginoux P, Torres O, Nicholson S E, Gill T E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 2002, 40(1): 1002 doi:10.1029/2000RG000095
[18]
Ridley D A, Heald C L, Pierce J R, Evans M J. Toward resolution-independent dust emissions in global models: impacts on the seasonal and spatial distribution of dust. Geophysical Research Letters, 2013, 40(11): 2873–2877
CrossRef Google scholar
[19]
Stanelle T, Bey I, Raddatz T, Reick C, Tegen I. Anthropogenically induced changes in twentieth century mineral dust burden and the associated impact on radiative forcing. Journal of Geophysical Research, D, Atmospheres, 2014, 119(23): 13526–13546
CrossRef Google scholar
[20]
Tegen I, Fung I. Modeling of mineral dust in the atmosphere: sources, transport, and optical thickness. Journal of Geophysical Research, 1994, 99(D11): 22897
CrossRef Google scholar
[21]
Zender C S, Miller R L R L, Tegen I. Quantifying mineral dust mass budgets: terminology, constraints, and current estimates. Eos (Washington D.C.), 2004, 85(48): 509–512
CrossRef Google scholar
[22]
Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Journal of Geophysical Research: Atmospheres (1984–2012), 1997, 102(D23): 28041–28047
[23]
Zhang X Y, Gong S L, Shen Z X, Mei F M, Xi X X, Liu L C, Zhou Z J, Wang D, Wang Y Q, Cheng Y. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D9):4261
[24]
Mahowald N, Albani S, Kok J F, Engelstaeder S, Scanza R, Ward D S, Flanner M G. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research, 2014, 15: 53–71
CrossRef Google scholar
[25]
Gong S L, Zhang X Y, Zhao T L, McKendry I G, Jaffe D A, Lu N M. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D9):
CrossRef Google scholar
[26]
Gong S L, Zhang X Y, Zhao T L, Zhang X B, Barrie L A, McKendry I G, Zhao C S. A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: Interannual variability and climate connections. Journal of Climate, 2006, 19(1): 104–122
CrossRef Google scholar
[27]
Steltzer H, Landry C, Painter T H, Anderson J, Ayres E. Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(28): 11629–11634
CrossRef Pubmed Google scholar
[28]
McKendry I G, Hacker J P, Stull R, Sakiyama S, Mignacca D, Reid K. Long-range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada. Journal of Geophysical Research, 2001, 106(D16): 18361–18370
CrossRef Google scholar
[29]
Duce R A, Unni C K, Ray B J, Prospero J M, Merrill J T. Long-range atmospheric transport of soil dust from Asia to the tropical north pacific: temporal variability. Science, 1980, 209(4464): 1522–1524
CrossRef Pubmed Google scholar
[30]
Murayama T, Sugimoto N, Uno I, Kinoshita K, Aoki K, Hagiwara N, Liu Z, Matsui I, Sakai T, Shibata T, Arao K, Sohn B J, Won J G, Yoon S C, Li T, Zhou J, Hu H, Abo M, Iokibe K, Koga R, Iwasaka Y. Ground-based network observation of Asian dust events of April 1998 in East Asia. Journal of Geophysical Research, 2001, 106(D16): 18345–18360
CrossRef Google scholar
[31]
Merrill J, Arnold E, Leinen M, Weaver C. Mineralogy of aeolian dust reaching the North Pacific Ocean: 2. Relationship of mineral assemblages to atmospheric transport patterns. Journal of Geophysical Research: Atmospheres (1984–2012), 1994, 99(D10): 21025–21032
[32]
Chun Y, Boo K O, Kim J, Park S U, Lee M. Synopsis, transport, and physical characteristics of Asian dust in Korea. Journal of Geophysical Research, 2001, 106(D16): 18067–18074
CrossRef Google scholar
[33]
Uno I, Eguchi K, Yumimoto K, Takemura T, Shimizu A, Uematsu M, Liu Z, Wang Z, Hara Y, Sugimoto N. Asian dust transported one full circuit around the globe. Nature Geoscience, 2009, 2(8): 557–560
CrossRef Google scholar
[34]
Hand J L, Mahowald N M, Chen Y, Siefert R L, Luo C, Subramaniam A, Fung I. Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications. Journal of Geophysical Research: Atmospheres (1984–2012), 2004, 109(17): 1781–1795
[35]
Jickells T D, An Z S, Andersen K K, Baker A R, Bergametti G, Brooks N, Cao J J, Boyd P W, Duce R A, Hunter K A, Kawahata H, Kubilay N, laRoche J, Liss P S, Mahowald N, Prospero J M, Ridgwell A J, Tegen I, Torres R. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 2005, 308(5718): 67–71
CrossRef Pubmed Google scholar
[36]
Zhang X Y, Arimoto R, An Z S. Glacial and interglacial patterns for Asian dust transport. Quaternary Science Reviews, 1999, 18(6): 811–819
CrossRef Google scholar
[37]
Ramanathan V, Crutzen P J, Kiehl J T, Rosenfeld D. Aerosols, climate, and the hydrological cycle. Science, 2001, 294(5549): 2119–2124
CrossRef Pubmed Google scholar
[38]
Rosenfeld D. Aerosols, clouds, and climate. Science, 2006, 312(5778): 1323–1324 doi:10.1126/science.1128972
Pubmed
[39]
Twomey S. The influence of pollution on the shortwave albedo of clouds. Journal of the Atmospheric Sciences, 1977, 34(7): 1149–1152
CrossRef Google scholar
[40]
McCoy D T, Burrows S M, Wood R, Grosvenor D P, Elliott S M, Ma P L, Rasch P J, Hartmann D L. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo. Science Advances, 2015, 1(6): e1500157 doi:10.1126/sciadv.1500157
Pubmed
[41]
Kaufman Y J, Tanré D, Boucher O. A satellite view of aerosols in the climate system. Nature, 2002, 419(6903): 215–223
CrossRef Pubmed Google scholar
[42]
Allen R J, Landuyt W, Rumbold S T. An increase in aerosol burden and radiative effects in a warmer world. Nature Climate Change, 2016, 6(3): 269–274
CrossRef Google scholar
[43]
Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D W, Haywood J, Lean J, Lowe D C, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller, H L. Climate Change 2007. Cambridge: Cambridge University Press, 2007, 129–234
[44]
Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen H E, Nieminen T, Petäjä T, Sipilä M, Schobesberger S, Rantala P, Franchin A, Jokinen T, Järvinen E, Äijälä M, Kangasluoma J, Hakala J, Aalto P P, Paasonen P, Mikkilä J, Vanhanen J, Aalto J, Hakola H, Makkonen U, Ruuskanen T, Mauldin R L 3rd, Duplissy J, Vehkamäki H, Bäck J, Kortelainen A, Riipinen I, Kurtén T, Johnston M V, Smith J N, Ehn M, Mentel T F, Lehtinen K E J, Laaksonen A, Kerminen V M, Worsnop D R. Direct observations of atmospheric aerosol nucleation. Science, 2013, 339(6122): 943–946
CrossRef Pubmed Google scholar
[45]
Albrecht B A. Aerosols, cloud microphysics, and fractional cloudiness. Science, 1989, 245(4923): 1227–1230
CrossRef Pubmed Google scholar
[46]
Wang W, Evan A T, Flamant C, Lavaysse C. On the decadal scale correlation between African dust and Sahel rainfall: the role of Saharan heat low-forced winds. Science Advances, 2015, 1(9): e1500646
CrossRef Pubmed Google scholar
[47]
Yin Y, Wurzler S, Levin Z, Reisin T G. Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. Journal of Geophysical Research: Atmospheres (1984–2012), 2002, 107(D23): AAC 19-1–AAC 19-14
[48]
Teller A, Levin Z. The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model. Atmospheric Chemistry and Physics, 2006, 6(1): 67–80
CrossRef Google scholar
[49]
Rudich Y, Khersonsky O, Rosenfeld D. Treating clouds with a grain of salt. Geophysical Research Letters, 2002, 29(22): 17–1
CrossRef Google scholar
[50]
Yin Y, Levin Z, Reisin T G, Tzivion S. The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study. Atmospheric Research, 2000, 53(1): 91–116
CrossRef Google scholar
[51]
Yu H, Kaufman Y J, Chin M, Feingold G, Remer L A, Anderson T L, Balkanski Y, Bellouin N, Boucher O, Christopher S, DeCola P, Kahn R, Koch D, Loeb N, Reddy M S, Schulz M, Takemura T, Zhou M. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics, 2006, 6(3): 613–666
CrossRef Google scholar
[52]
Myhre G. Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science, 2009, 325(5937): 187–190
CrossRef Pubmed Google scholar
[53]
Park M, Oh J, Park K. Development of a cloud condensation nuclei (CCN) counter using a laser and charge-coupled device (CCD) camera. Frontiers of Environmental Science & Engineering in China, 2011, 5(3): 313–319 doi:10.1007/s11783-011-0346-y
[54]
Martínez-García A, Sigman D M, Ren H, Anderson R F, Straub M, Hodell D A, Jaccard S L, Eglinton T I, Haug G H. Iron fertilization of the Subantarctic ocean during the last ice age. Science, 2014, 343(6177): 1347–1350
CrossRef Pubmed Google scholar
[55]
Conway T M, Wolff E W, Röthlisberger R, Mulvaney R, Elderfield H E. Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum. Nature Communications, 2015, 6: 7850
CrossRef Pubmed Google scholar
[56]
Zhuang G, Yi Z, Duce R A, Brown P R. Chemistry of iron in marine aerosols. Global Biogeochemical Cycles, 1992, 6(2): 161–173
CrossRef Google scholar
[57]
Schroth A W, Crusius J, Sholkovitz E R, Bostick B C. Iron solubility driven by speciation in dust sources to the ocean. Nature Geoscience, 2009, 2(5): 337–340
CrossRef Google scholar
[58]
Conway T M, John S G. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature, 2014, 511(7508): 212–215
CrossRef Pubmed Google scholar
[59]
Young R W, Carder K L, Betzer P R, Costello D K, Duce R A, DiTullio G R, Tindale N W, Laws E A, Uematsu M, Merrill J T, Feely R A. Atmospheric iron inputs and primary productivity: Phytoplankton responses in the North Pacific. Global Biogeochemical Cycles, 1991, 5(2): 119–134
CrossRef Google scholar
[60]
Bishop J K, Davis R E, Sherman J T. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science, 2002, 298(5594): 817–821
CrossRef Pubmed Google scholar
[61]
Cassar N, Bender M L, Barnett B A, Fan S, Moxim W J, Levy H 2nd, Tilbrook B. The Southern Ocean biological response to aeolian iron deposition. Science, 2007, 317(5841): 1067–1070
CrossRef Pubmed Google scholar
[62]
Mills M M, Ridame C, Davey M, La Roche J, Geider R J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature, 2004, 429(6989): 292–294
CrossRef Pubmed Google scholar
[63]
Duce R A, LaRoche J, Altieri K, Arrigo K R, Baker A R, Capone D G, Cornell S, Dentener F, Galloway J, Ganeshram R S, Geider R J, Jickells T, Kuypers M M, Langlois R, Liss P S, Liu S M, Middelburg J J, Moore C M, Nickovic S, Oschlies A, Pedersen T, Prospero J, Schlitzer R, Seitzinger S, Sorensen L L, Uematsu M, Ulloa O, Voss M, Ward B, Zamora L. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 2008, 320(5878): 893–897
CrossRef Pubmed Google scholar
[64]
Paytan A, Mackey K R, Chen Y, Lima I D, Doney S C, Mahowald N, Labiosa R, Post A F. Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4601–4605
CrossRef Pubmed Google scholar
[65]
Shinn E A, Smith G W, Prospero J M, Betzer P, Hayes M L, Garrison V, Barber R T. African dust and the demise of Caribbean coral reefs. Geophysical Research Letters, 2000, 27(19): 3029–3032
CrossRef Google scholar

Acknowledgements

This study was supported by the National Special Scientific Research Fund with Public Welfare in Forestry Field (Grant No. 201404304-4), the National Natural Science Foundation of China (Grant Nos. 31570710 and 31100518), the National Key Research and Development Program of China (Grant No. 2016YFC0500801-03), and the Lecture and Study Program for Outstanding Scholars from Home and Abroad (Grant No. CAFYBB2011007). CGS acknowledges the financial support of NASA Headquarters under the NASA Earth and Space Science Fellowship Program (Grant No. 14-EARTH14F-241) and of the Science, Technology, and Environmental Policy Fellowship from the Princeton Environmental Institute.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(266 KB)

Accesses

Citations

Detail

Sections
Recommended

/