Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review

Feng Wang , Xueqiu Zhao , Cynthia Gerlein-Safdi , Yue Mu , Dongfang Wang , Qi Lu

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (1) : 13

PDF (266KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (1) : 13 DOI: 10.1007/s11783-017-0904-z
REVIEW ARTICLE
REVIEW ARTICLE

Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review

Author information +
History +
PDF (266KB)

Abstract

he main sources of sand and dust lie in deserts and semi-deserts, such as the Sahara Desert in Africa and the deserts in Central and Western Asia.

Dust aerosols directly alter the radiation balance of the earth-atmosphere system by scattering and absorbing short- and long-wave radiation.

Dust aerosols indirectly alter the albedo and rainfall patterns by acting as cloud condensation nuclei (CCN) or ice nuclei (IN).

Dust aerosols mitigate global warming by altering the amount of CO2 absorbed by the marine phytoplankton.

Dust and Sand Storms (DSS) originating in deserts in arid and semi-arid regions are events raising global public concern. An important component of atmospheric aerosols, dust aerosols play a key role in climatic and environmental changes at the regional and the global scale. Deserts and semi-deserts are the main source of dust and sand, but regions that undergo vegetation deterioration and desertification due to climate change and human activities also contribute significantly to DSS. Dust aerosols are mainly composed of dust particles with an average diameter of 2 mm, which can be transported over thousands of kilometers. Dust aerosols influence the radiation budget of the earth-atmosphere system by scattering solar short-wave radiation and absorbing surface long-wave radiation. They can also change albedo and rainfall patterns because they can act as cloud condensation nuclei (CCN) or ice nuclei (IN). Dust deposition is an important source of both marine nutrients and contaminants. Dust aerosols that enter marine ecosystems after long-distance transport influence phytoplankton biomass in the oceans, and thus global climate by altering the amount of CO2 absorbed by phytoplankton. In addition, the carbonates carried by dust aerosols are an important source of carbon for the alkaline carbon pool, which can buffer atmospheric acidity and increase the alkalinity of seawater. DSS have both positive and negative impacts on human society: they can exert adverse impacts on human’s living environment, but can also contribute to the mitigation of global warming and the reduction of atmospheric acidity.

Keywords

Dust and sand storm / Climate effects / Radiative forcing / Cloud condensation nuclei / Precipitation / Iron fertilizer

Cite this article

Download citation ▾
Feng Wang, Xueqiu Zhao, Cynthia Gerlein-Safdi, Yue Mu, Dongfang Wang, Qi Lu. Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review. Front. Environ. Sci. Eng., 2017, 11(1): 13 DOI:10.1007/s11783-017-0904-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

UNEP. WMO, UNCCD. Global Assessment of Sand and Dust Storms — WMO SDS-WAS. United Nations Environment Programme. Nairobi, 2016

[2]

Xi X, Sokolik I N. Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia. Journal of Geophysical Research, D, Atmospheres, 2016, 121(20): 12270–12281

[3]

Chadwick O A, Derry L A, Vitousek P M, Huebert B J, Hedin L O. Changing sources of nutrients during four million years of ecosystem development. Nature, 1999, 397(6719): 491–497

[4]

Yu H, Remer L A, Chin M, Bian H, Tan Q, Yuan T, Zhang Y. Aerosols from overseas rival domestic emissions over North America. American Scientist, 2012, 337(6094): 566–569

[5]

Satheesh S, Krishnamoorthy K. Radiative effects of natural aerosols: a review. Atmospheric Environment, 2005, 39(11): 2089–2110

[6]

Lambert F, Kug J S, Park R J, Mahowald N, Winckler G, Abe-Ouchi A, O’ishi R, Takemura T, Lee J H. The role of mineral-dust aerosols in polar temperature amplification. Nature Climate Change, 2013, 3(5): 487–491

[7]

Haywood J, Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Reviews of Geophysics, 2000, 38(4): 513–543

[8]

Anderson T L, Charlson R J, Schwartz S E, Knutti R, Boucher O, Rodhe H, Heintzenberg J. Atmospheric science. Climate forcing by aerosol—A hazy picture. Science, 2003, 300(5622): 1103–1104

[9]

Pósfai M, Buseck P R. Nature and climate effects of individual tropospheric aerosol particles. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 17–43

[10]

Creamean J M, Suski K J, Rosenfeld D, Cazorla A, DeMott P J, Sullivan R C, White A B, Ralph F M, Minnis P, Comstock J M, Tomlinson J M, Prather K A. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 2013, 339(6127): 1572–1578

[11]

Falkowski P G, Barber R T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science, 1998, 281(5374): 200–207

[12]

Prospero J M, Bullard J E, Hodgkins R. High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science, 2012, 335(6072): 1078–1082

[13]

Lamy F, Gersonde R, Winckler G, Esper O, Jaeschke A, Kuhn G, Ullermann J, Martinez-Garcia A, Lambert F, Kilian R. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science, 2014, 343(6169): 403–407

[14]

Cao J J, Lee S C, Zhang X Y, Chow J C, An Z S, Ho K F, Watson J G, Fung K, Wang Y Q, Shen Z X. Characterization of airborne carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance. Journal of Geophysical Research, D, Atmospheres, 2005, 110(D3): D03203

[15]

Broxton P D, Zeng X, Scheftic W, Troch P A. A MODIS-Based Global 1-km maximum green vegetation fraction dataset. Journal of Applied Meteorology and Climatology, 2014, 53(8): 1996–2004 doi:10.1175/JAMC-D-13-0356.1

[16]

Ginoux P, Prospero J M, Gill T E, Hsu N C, Zhao M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 2012, 50(3): RG3005

[17]

Prospero J M, Ginoux P, Torres O, Nicholson S E, Gill T E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 2002, 40(1): 1002 doi:10.1029/2000RG000095

[18]

Ridley D A, Heald C L, Pierce J R, Evans M J. Toward resolution-independent dust emissions in global models: impacts on the seasonal and spatial distribution of dust. Geophysical Research Letters, 2013, 40(11): 2873–2877

[19]

Stanelle T, Bey I, Raddatz T, Reick C, Tegen I. Anthropogenically induced changes in twentieth century mineral dust burden and the associated impact on radiative forcing. Journal of Geophysical Research, D, Atmospheres, 2014, 119(23): 13526–13546

[20]

Tegen I, Fung I. Modeling of mineral dust in the atmosphere: sources, transport, and optical thickness. Journal of Geophysical Research, 1994, 99(D11): 22897

[21]

Zender C S, Miller R L R L, Tegen I. Quantifying mineral dust mass budgets: terminology, constraints, and current estimates. Eos (Washington D.C.), 2004, 85(48): 509–512

[22]

Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Journal of Geophysical Research: Atmospheres (1984–2012), 1997, 102(D23): 28041–28047

[23]

Zhang X Y, Gong S L, Shen Z X, Mei F M, Xi X X, Liu L C, Zhou Z J, Wang D, Wang Y Q, Cheng Y. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 1. Network observations. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D9):4261

[24]

Mahowald N, Albani S, Kok J F, Engelstaeder S, Scanza R, Ward D S, Flanner M G. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research, 2014, 15: 53–71

[25]

Gong S L, Zhang X Y, Zhao T L, McKendry I G, Jaffe D A, Lu N M. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D9):

[26]

Gong S L, Zhang X Y, Zhao T L, Zhang X B, Barrie L A, McKendry I G, Zhao C S. A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: Interannual variability and climate connections. Journal of Climate, 2006, 19(1): 104–122

[27]

Steltzer H, Landry C, Painter T H, Anderson J, Ayres E. Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(28): 11629–11634

[28]

McKendry I G, Hacker J P, Stull R, Sakiyama S, Mignacca D, Reid K. Long-range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada. Journal of Geophysical Research, 2001, 106(D16): 18361–18370

[29]

Duce R A, Unni C K, Ray B J, Prospero J M, Merrill J T. Long-range atmospheric transport of soil dust from Asia to the tropical north pacific: temporal variability. Science, 1980, 209(4464): 1522–1524

[30]

Murayama T, Sugimoto N, Uno I, Kinoshita K, Aoki K, Hagiwara N, Liu Z, Matsui I, Sakai T, Shibata T, Arao K, Sohn B J, Won J G, Yoon S C, Li T, Zhou J, Hu H, Abo M, Iokibe K, Koga R, Iwasaka Y. Ground-based network observation of Asian dust events of April 1998 in East Asia. Journal of Geophysical Research, 2001, 106(D16): 18345–18360

[31]

Merrill J, Arnold E, Leinen M, Weaver C. Mineralogy of aeolian dust reaching the North Pacific Ocean: 2. Relationship of mineral assemblages to atmospheric transport patterns. Journal of Geophysical Research: Atmospheres (1984–2012), 1994, 99(D10): 21025–21032

[32]

Chun Y, Boo K O, Kim J, Park S U, Lee M. Synopsis, transport, and physical characteristics of Asian dust in Korea. Journal of Geophysical Research, 2001, 106(D16): 18067–18074

[33]

Uno I, Eguchi K, Yumimoto K, Takemura T, Shimizu A, Uematsu M, Liu Z, Wang Z, Hara Y, Sugimoto N. Asian dust transported one full circuit around the globe. Nature Geoscience, 2009, 2(8): 557–560

[34]

Hand J L, Mahowald N M, Chen Y, Siefert R L, Luo C, Subramaniam A, Fung I. Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications. Journal of Geophysical Research: Atmospheres (1984–2012), 2004, 109(17): 1781–1795

[35]

Jickells T D, An Z S, Andersen K K, Baker A R, Bergametti G, Brooks N, Cao J J, Boyd P W, Duce R A, Hunter K A, Kawahata H, Kubilay N, laRoche J, Liss P S, Mahowald N, Prospero J M, Ridgwell A J, Tegen I, Torres R. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 2005, 308(5718): 67–71

[36]

Zhang X Y, Arimoto R, An Z S. Glacial and interglacial patterns for Asian dust transport. Quaternary Science Reviews, 1999, 18(6): 811–819

[37]

Ramanathan V, Crutzen P J, Kiehl J T, Rosenfeld D. Aerosols, climate, and the hydrological cycle. Science, 2001, 294(5549): 2119–2124

[38]

Rosenfeld D. Aerosols, clouds, and climate. Science, 2006, 312(5778): 1323–1324 doi:10.1126/science.1128972

[39]

Twomey S. The influence of pollution on the shortwave albedo of clouds. Journal of the Atmospheric Sciences, 1977, 34(7): 1149–1152

[40]

McCoy D T, Burrows S M, Wood R, Grosvenor D P, Elliott S M, Ma P L, Rasch P J, Hartmann D L. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo. Science Advances, 2015, 1(6): e1500157 doi:10.1126/sciadv.1500157

[41]

Kaufman Y J, Tanré D, Boucher O. A satellite view of aerosols in the climate system. Nature, 2002, 419(6903): 215–223

[42]

Allen R J, Landuyt W, Rumbold S T. An increase in aerosol burden and radiative effects in a warmer world. Nature Climate Change, 2016, 6(3): 269–274

[43]

Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D W, Haywood J, Lean J, Lowe D C, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller, H L. Climate Change 2007. Cambridge: Cambridge University Press, 2007, 129–234

[44]

Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen H E, Nieminen T, Petäjä T, Sipilä M, Schobesberger S, Rantala P, Franchin A, Jokinen T, Järvinen E, Äijälä M, Kangasluoma J, Hakala J, Aalto P P, Paasonen P, Mikkilä J, Vanhanen J, Aalto J, Hakola H, Makkonen U, Ruuskanen T, Mauldin R L 3rd, Duplissy J, Vehkamäki H, Bäck J, Kortelainen A, Riipinen I, Kurtén T, Johnston M V, Smith J N, Ehn M, Mentel T F, Lehtinen K E J, Laaksonen A, Kerminen V M, Worsnop D R. Direct observations of atmospheric aerosol nucleation. Science, 2013, 339(6122): 943–946

[45]

Albrecht B A. Aerosols, cloud microphysics, and fractional cloudiness. Science, 1989, 245(4923): 1227–1230

[46]

Wang W, Evan A T, Flamant C, Lavaysse C. On the decadal scale correlation between African dust and Sahel rainfall: the role of Saharan heat low-forced winds. Science Advances, 2015, 1(9): e1500646

[47]

Yin Y, Wurzler S, Levin Z, Reisin T G. Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. Journal of Geophysical Research: Atmospheres (1984–2012), 2002, 107(D23): AAC 19-1–AAC 19-14

[48]

Teller A, Levin Z. The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model. Atmospheric Chemistry and Physics, 2006, 6(1): 67–80

[49]

Rudich Y, Khersonsky O, Rosenfeld D. Treating clouds with a grain of salt. Geophysical Research Letters, 2002, 29(22): 17–1

[50]

Yin Y, Levin Z, Reisin T G, Tzivion S. The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study. Atmospheric Research, 2000, 53(1): 91–116

[51]

Yu H, Kaufman Y J, Chin M, Feingold G, Remer L A, Anderson T L, Balkanski Y, Bellouin N, Boucher O, Christopher S, DeCola P, Kahn R, Koch D, Loeb N, Reddy M S, Schulz M, Takemura T, Zhou M. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics, 2006, 6(3): 613–666

[52]

Myhre G. Consistency between satellite-derived and modeled estimates of the direct aerosol effect. Science, 2009, 325(5937): 187–190

[53]

Park M, Oh J, Park K. Development of a cloud condensation nuclei (CCN) counter using a laser and charge-coupled device (CCD) camera. Frontiers of Environmental Science & Engineering in China, 2011, 5(3): 313–319 doi:10.1007/s11783-011-0346-y

[54]

Martínez-García A, Sigman D M, Ren H, Anderson R F, Straub M, Hodell D A, Jaccard S L, Eglinton T I, Haug G H. Iron fertilization of the Subantarctic ocean during the last ice age. Science, 2014, 343(6177): 1347–1350

[55]

Conway T M, Wolff E W, Röthlisberger R, Mulvaney R, Elderfield H E. Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum. Nature Communications, 2015, 6: 7850

[56]

Zhuang G, Yi Z, Duce R A, Brown P R. Chemistry of iron in marine aerosols. Global Biogeochemical Cycles, 1992, 6(2): 161–173

[57]

Schroth A W, Crusius J, Sholkovitz E R, Bostick B C. Iron solubility driven by speciation in dust sources to the ocean. Nature Geoscience, 2009, 2(5): 337–340

[58]

Conway T M, John S G. Quantification of dissolved iron sources to the North Atlantic Ocean. Nature, 2014, 511(7508): 212–215

[59]

Young R W, Carder K L, Betzer P R, Costello D K, Duce R A, DiTullio G R, Tindale N W, Laws E A, Uematsu M, Merrill J T, Feely R A. Atmospheric iron inputs and primary productivity: Phytoplankton responses in the North Pacific. Global Biogeochemical Cycles, 1991, 5(2): 119–134

[60]

Bishop J K, Davis R E, Sherman J T. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science, 2002, 298(5594): 817–821

[61]

Cassar N, Bender M L, Barnett B A, Fan S, Moxim W J, Levy H 2nd, Tilbrook B. The Southern Ocean biological response to aeolian iron deposition. Science, 2007, 317(5841): 1067–1070

[62]

Mills M M, Ridame C, Davey M, La Roche J, Geider R J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature, 2004, 429(6989): 292–294

[63]

Duce R A, LaRoche J, Altieri K, Arrigo K R, Baker A R, Capone D G, Cornell S, Dentener F, Galloway J, Ganeshram R S, Geider R J, Jickells T, Kuypers M M, Langlois R, Liss P S, Liu S M, Middelburg J J, Moore C M, Nickovic S, Oschlies A, Pedersen T, Prospero J, Schlitzer R, Seitzinger S, Sorensen L L, Uematsu M, Ulloa O, Voss M, Ward B, Zamora L. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 2008, 320(5878): 893–897

[64]

Paytan A, Mackey K R, Chen Y, Lima I D, Doney S C, Mahowald N, Labiosa R, Post A F. Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4601–4605

[65]

Shinn E A, Smith G W, Prospero J M, Betzer P, Hayes M L, Garrison V, Barber R T. African dust and the demise of Caribbean coral reefs. Geophysical Research Letters, 2000, 27(19): 3029–3032

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (266KB)

3423

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/