Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored amphiphilic nanoparticles
Shuai Liang, Peng Gao, Xiaoqi Gao, Kang Xiao, Xia Huang
Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored amphiphilic nanoparticles
Two types of amphiphilic nanoparticles were prepared via silanization reaction.
Amphiphilic nanoparticles tend to protrude from membrane matrix by segregation.
Blending with amphiphilic nanoparticles further enhances membrane hydrophilicity.
Excessive silanization cause adverse effect on blending efficiency.
Membrane modification / Nanoparticle / Hydrophilic / Amphiphilic / Blending
[1] |
Elimelech M, Phillip W A. The future of seawater desalination: energy, technology, and the environment. Science, 2011, 333(6043): 712–717
CrossRef
Pubmed
Google scholar
|
[2] |
Logan B E, Elimelech M. Membrane-based processes for sustainable power generation using water. Nature, 2012, 488(7411): 313–319
CrossRef
Pubmed
Google scholar
|
[3] |
Xiao K, Xu Y, Liang S, Lei T, Sun J, Wen X, Zhang H, Chen C, Huang X. Engineering application of membrane bioreactor for wastewater treatment in China: current state and future prospect. Frontiers of Environmental Science & Engineering, 2014, 8(6): 805–819
CrossRef
Google scholar
|
[4] |
Meng F G, Chae S R, Shin H S, Yang F L, Zhou Z B. Recent advances in membrane bioreactors: configuration development, pollutant elimination, and sludge reduction. Environmental Engineering Science, 2012, 29(3): 139–160
CrossRef
Google scholar
|
[5] |
Huang X, Xiao K, Shen Y X. Recent advances in membrane bioreactor technology for wastewater treatment in China. Frontiers of Environmental Science & Engineering, 2010, 4(3): 245–271
CrossRef
Google scholar
|
[6] |
She Q, Wang R, Fane A G, Tang C Y. Membrane fouling in osmotically driven membrane processes: a review. Journal of Membrane Science, 2016, 499: 201–233
CrossRef
Google scholar
|
[7] |
Wang S, Liang S, Liang P, Zhang X Y, Sun J Y, Wu S J, Huang X. In-situ combined dual-layer CNT/PVDF membrane for electrically-enhanced fouling resistance. Journal of Membrane Science, 2015, 491: 37–44
CrossRef
Google scholar
|
[8] |
Chang H, Liu B, Luo W, Li G. Fouling mechanisms in the early stage of an enhanced coagulation-ultrafiltration process. Frontiers of Environmental Science & Engineering, 2015, 9(1): 73–83
CrossRef
Google scholar
|
[9] |
Liang S, Qi G, Xiao K, Sun J, Giannelis E P, Huang X, Elimelech M. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: implications for organic fouling in membrane bioreactors. Journal of Membrane Science, 2014, 463: 94–101
CrossRef
Google scholar
|
[10] |
Mauter M S, Wang Y, Okemgbo K C, Osuji C O, Giannelis E P, Elimelech M. Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Applied Materials & Interfaces, 2011, 3(8): 2861–2868
CrossRef
Pubmed
Google scholar
|
[11] |
Hegab H M, ElMekawy A, Barclay T G, Michelmore A, Zou L, Saint C P, Ginic-Markovic M. Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Applied Materials & Interfaces, 2015, 7(32): 18004–18016
CrossRef
Pubmed
Google scholar
|
[12] |
Wang X M, Li X Y, Shih K. In situ embedment and growth of anhydrous and hydrated aluminum oxide particles on polyvinylidene fluoride (PVDF) membranes. Journal of Membrane Science, 2011, 368(1–2): 134–143
CrossRef
Google scholar
|
[13] |
Li W Y, Sun X L, Wen C, Lu H, Wang Z W. Preparation and characterization of poly (vinylidene fluoride)/TiO2 hybrid membranes. Frontiers of Environmental Science & Engineering, 2013, 7(4): 492–502
CrossRef
Google scholar
|
[14] |
Cui A H, Liu Z, Xiao C F, Zhang Y F. Effect of micro-sized SiO2-particle on the performance of PVDF blend membranes via TIPS. Journal of Membrane Science, 2010, 360(1–2): 259–264
CrossRef
Google scholar
|
[15] |
Wang J H, Zhu L P, Zhu B K, Xu Y Y. Fabrication of superhydrophilic poly(styrene-alt-maleic anhydride)/silica hybrid surfaces on poly(vinylidene fluoride) membranes. Journal of Colloid and Interface Science, 2011, 363(2): 676–681
CrossRef
Pubmed
Google scholar
|
[16] |
Tiraferri A, Kang Y, Giannelis E P, Elimelech M. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. Environmental Science & Technology, 2012, 46(20): 11135–11144
CrossRef
Pubmed
Google scholar
|
[17] |
Liang S, Xiao K, Mo Y, Huang X. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. Journal of Membrane Science, 2012, 394–395: 184–192
CrossRef
Google scholar
|
[18] |
Hester J F, Banerjee P, Mayes A M. Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules, 1999, 32(5): 1643–1650
CrossRef
Google scholar
|
[19] |
Asatekin A, Kang S, Elimelech M, Mayes A M. Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly (ethylene oxide) comb copolymer additives. Journal of Membrane Science, 2007, 298(1–2): 136–146
CrossRef
Google scholar
|
[20] |
Bottino A, Camera-Roda G, Capannelli G, Munari S. The formation of microporous polyvinylidene difluoride membranes by phase separation. Journal of Membrane Science, 1991, 57(1): 1–20
CrossRef
Google scholar
|
[21] |
Liang S, Kang Y, Tiraferri A, Giannelis E P, Huang X, Elimelech M. Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. ACS Applied Materials & Interfaces, 2013, 5(14): 6694–6703
CrossRef
Pubmed
Google scholar
|
[22] |
Posthumus W, Magusin P C, Brokken-Zijp J C M, Tinnemans A H A, van der Linde R. Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane. Journal of Colloid and Interface Science, 2004, 269(1): 109–116
CrossRef
Pubmed
Google scholar
|
[23] |
Tang E J, Cheng G X, Pang X S, Ma X L, Xing F B. Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property. Colloid & Polymer Science, 2006, 284(4): 422–428
CrossRef
Google scholar
|
[24] |
Kralj S, Drofenik M, Makovec D. Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups. Journal of Nanoparticle Research, 2011, 13(7): 2829–2841
CrossRef
Google scholar
|
[25] |
Abdolmaleki A, Mallakpour S, Borandeh S. Effect of silane-modified ZnO on morphology and properties of bionanocomposites based on poly(ester-amide) containing tyrosine linkages. Polymer Bulletin, 2012, 69(1): 15–28
CrossRef
Google scholar
|
[26] |
Pan A, He L. Fabrication pentablock copolymer/silica hybrids as self-assembly coatings. Journal of Colloid and Interface Science, 2014, 414: 1–8
CrossRef
Pubmed
Google scholar
|
[27] |
Wang Z, Wu Z, Tang S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research, 2009, 43(9): 2504–2512
CrossRef
Pubmed
Google scholar
|
[28] |
Liang S, Xiao K, Wu J, Liang P, Huang X. Mechanism of membrane filterability amelioration via tuning mixed liquor property by pre-ozonation. Journal of Membrane Science, 2014, 454: 111–118
CrossRef
Google scholar
|
[29] |
Yu L Y, Xu Z L, Shen H M, Yang H. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. Journal of Membrane Science, 2009, 337(1–2): 257–265
CrossRef
Google scholar
|
[30] |
Liu F, Hashim N A, Liu Y T, Abed M R M, Li K. Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 2011, 375(1–2): 1–27
CrossRef
Google scholar
|
[31] |
Lin D J, Beltsios K, Young T H, Jeng Y S, Cheng L P. Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes. Journal of Membrane Science, 2006, 274(1–2): 64–72
CrossRef
Google scholar
|
[32] |
Adout A, Kang S, Asatekin A, Mayes A M, Elimelech M. Ultrafiltration membranes incorporating amphiphilic comb copolymer additives prevent irreversible adhesion of bacteria. Environmental Science & Technology, 2010, 44(7): 2406–2411
CrossRef
Pubmed
Google scholar
|
[33] |
Shen Z Y, Chen Z, Hou Z, Li T T, Lu X X. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Frontiers of Environmental Science & Engineering, 2015, 9(5): 912–918
CrossRef
Google scholar
|
[34] |
Chang H Q, Liu B C, Luo W S, Li G B. Fouling mechanisms in the early stage of an enhanced coagulation-ultrafiltration process. Frontiers of Environmental Science & Engineering, 2015, 9(1): 73–83
CrossRef
Google scholar
|
/
〈 | 〉 |