PDF
(482KB)
Abstract
The Cu–Ni/γ-Al2O3 catalyst was prepared to study HCN hydrolysis
On catalyst calcined at 400°C, the HCN removal efficiency reaches a maximum.
HCN removal is the highest at 480 min at a H 2 O/HCN volume ratio of 150
The presence of CO facilitates HCN hydrolysis and increases NH 3 production.
O 2 increases the HCN removal and NOx production but decreases NH 3 production
GRAPHIC ABSTRACT
To decompose efficiently hydrogen cyanide (HCN) in exhaust gas, g-Al2O3-supported bimetallic-based Cu–Ni catalyst was prepared by incipient-wetness impregnation method. The effects of the calcination temperature, H2O/HCN volume ratio, reaction temperature, and the presence of CO or O2 on the HCN removal efficiency on the Cu–Ni/g-Al2O3 catalyst were investigated. To examine further the efficiency of HCN hydrolysis, degradation products were analyzed. The results indicate that the HCN removal efficiency increases and then decreases with increasing calcination temperature and H2O/HCN volume ratio. On catalyst calcined at 400°C, the efficiency reaches a maximum close to 99% at 480 min at a H2O/HCN volume ratio of 150. The HCN removal efficiency increases with increasing reaction temperature within the range of 100°C–500°C and reaches a maximum at 500°C. This trend may be attributed to the endothermicity of HCN hydrolysis; increasing the temperature favors HCN hydrolysis. However, the removal efficiencies increases very few at 500°C compared with that at 400°C. To conserve energy in industrial operations, 400°C is deemed as the optimal reaction temperature. The presence of CO facilitates HCN hydrolysis andincreases NH3 production. O2 substantially increases the HCN removal efficiency and NOx production but decreases NH3 production.
Graphical abstract
Keywords
Hydrogen cyanide
/
Cu–Ni/g-Al2O3
/
Catalytic hydrolysis
Cite this article
Download citation ▾
Linxia Yan, Senlin Tian, Jian Zhou, Xin Yuan.
Catalytic hydrolysis of gaseous HCN over Cu–Ni/γ-Al2O3 catalyst: parameters and conditions.
Front. Environ. Sci. Eng., 2016, 10(6): 5 DOI:10.1007/s11783-016-0872-8
| [1] |
Duquesne S, Bars M L, Bourbigot S, Delobel R, Poutch F, Camino G, Eling B, Lindsay C, Roels T. Analysis of fire gases released from polyurethane and fire-retarded polyurethane coatings. Journal of Fire Sciences, 2000, 18(6): 456–482
|
| [2] |
Dagaut P, Glarborg P, Alzueta M U. The oxidation of hydrogen cyanide and related chemistry. Progress in Energy and Combustion Science, 2008, 34(1): 1–46
|
| [3] |
Tuovinen H, Blomqvist P, Saric F. Modelling of hydrogen cyanide formation in room fires. Fire Safety Journal, 2004, 39(8): 737–755
|
| [4] |
Karlsson H L. Ammonia, nitrous oxide and hydrogen cyanide emissions from five passenger vehicles. Science of the Total Environment, 2004, 334-335: 125–132
|
| [5] |
Yuan S, Zhou Z J, Li J, Chen X L, Wang F C. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis. Energy & Fuels, 2010, 24(11): 6166–6171
|
| [6] |
Wang Z H, Jiang M, Ning P, Xie G. Thermodynamic modeling and gaseous pollution prediction of the yellow phosphorus production. Industrial & Engineering Chemistry Research, 2011, 50(21): 12194–12202
|
| [7] |
Jiang M, Wang Z H, Ning P, Tian S L, Huang X F, Bai Y W, Shi Y, Ren X G, Chen W, Qin Y S, Zhou J, Miao R R. Dust removal and purification of calcium carbide furnace off-gas. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(3): 901–907
|
| [8] |
Zhang F M, Li K X, Lu C X, Lu Y G, Yang Y G, Ling L C. Removal methods of hydrogen cyanide. New Carbon Materials, 2003, 18(2): 151–157
|
| [9] |
Jiang M, Ning P, Wang C H, Chen W, Zhou J, Wang L, Qin Y S. Research progress of HCN-containing exhaust gas treatment. Chemical Industry and Engineering Progress, 2012, 31(11): 2563–2569
|
| [10] |
Ning P, Jiang M, Wang X Q, Yang H, Shi Y, Bo Y W. Adsorption of low-concentration HCN on impregnated activated carbon. Journal of Chemical Engineering of Chinese Universities, 2010, 24(6): 1038–1045
|
| [11] |
Ye P W, Luan Z Q, Li K, Yu L Q, Zhang J C. The use of a combination of activated carbon and nickel microfibers in the removal of hydrogen cyanide from air. Carbon, 2009, 47(7): 1799–1805
|
| [12] |
Ning P, Qiu J, Wang X, Liu W, Chen W. Metal loaded zeolite adsorbents for hydrogen cyanide removal. Journal of Environmental Sciences (China), 2013, 25(4): 808–814
|
| [13] |
Colín G M, Ortega G F, Ramos B S, Negron M A. Heterogeneous radiolysis of HCN adsorbed on a solid surface. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 619(1): 83–85
|
| [14] |
Tan H Z, Wang X B, Wang C L, Xu T M. Characteristics of HCN removal using CaO at high temperatures. Energy & Fuels, 2009, 23(3): 1545–1550
|
| [15] |
Zhao H B, Tonkyn R G, Barlow S E, Koel B E, Peden C H F. Catalytic oxidation of HCN over a 0.5% Pt/Al2O3 catalyst. Applied Catalysis B: Environmental, 2006, 65(3): 282–290
|
| [16] |
Giménez-López J, Miller A, Bilbao R, Alzueta M U. HCN oxidation in an O2/CO2 atmosphere: an experimental and kinetic modeling study. Combustion and Flame, 2010, 157(2): 267–276
|
| [17] |
Marsh J D F, Newling W B S, Rich J. The catalytic hydrolysis of hydrogen cyanide to ammonia. Journal of Applied Chemistry, 1952, 2(12): 681–684
|
| [18] |
Nanba T, Obuchi A, Akaratiwa S, Liu S, Uchisawa J, Kushiyama S. Catalytic hydrolysis of HCN over H-ferrierite. Chemistry Letters, 2000, 29(9): 986–987
|
| [19] |
Schäfer S, Bonn B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part II: Heterogeneous reactions involving limestone. Fuel, 2012, 81(13): 1641–1646
|
| [20] |
Kröcher O, Elsener M. Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts. Applied Catalysis B: Environmental, 2009, 92(1–2): 75–89
|
| [21] |
Yuan X, Zhou J, Tian S L. Effects of transition metals grafted gamma-Al2O3 on catalytic hydrolysis of HCN. Research of Environmental Sciences, 2014, 27(12): 1465–1471
|
| [22] |
Gayán P, Dueso C, Abad A, Adanez J, Diego L F. NiO/Al2O3 oxygen carriers for chemical-looping combustion prepared by impregnation and deposition-precipitation methods. Fuel, 2009, 88(6): 1016–1023
|
| [23] |
Gayán P, Diego L F, García-Labiano F. Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion. Fuel, 2008, 87(12): 2641–2650
|
| [24] |
HJ 484–2009, Water quality-determination of cyanid-volumetric and spectro-photometry method
|
| [25] |
Rida K, Benabbas A, Bouremmad F, Peña M A, Sastre E, Martínez-Arias A. Effect of calcination temperature on the structural characteristics and catalytic activity for propene combustion of sol-gel derived lanthanum chromite perovskite. Applied Catalysis A, General, 2007, 327(2): 173–179
|
| [26] |
Cheng W, Xu J, Ding W, Wang Y, Zheng W, Wu F, Li J. Synthesis of porous super paramagnetic iron oxides from colloidal nanoparticles: effect of calcination temperature and atmosphere. Materials Chemistry and Physics, 2015, 153: 187–194
|
| [27] |
Das T, Sengupta S, Deo G. Effect of calcination temperature during the synthesis of Co/Al2O3 catalyst used for the hydrogenation of CO2. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110(1): 147–162
|
| [28] |
Zhang N W, Huang C J, Zhu X Q, Xu J D, Weng W Z, Wan H L. Effect of calcination temperature and pretreatment with reaction gas on properties of Co/g-Al2O3 catalysts for partial oxidation of methane. Chemistry, an Asian Journal, 2012, 7(8): 1895–1901
|
| [29] |
Jung J S, Lee J S, Choi G, Ramesh S, Moon D J. The characterization of micro-structure of cobalt on g-Al2O3 for FTS: effects of pretreatment on Ru-Co/g-Al2O3. Fuel, 2015, 149: 118–129
|
| [30] |
Wang J H, Dong X D, Wang Y J, Li Y. Effect of the calcination temperature on the performance of a CeMoOx. Catalysis Today, 2015, 245: 10–15
|
| [31] |
Zhu J, Wang W, Hua X N, Xia Z, Deng Z. Simultaneous CO2 capture and H2 generation using Fe2O3/Al2O3 and Fe2O3/CuO/Al2O3 as oxygen carriers in single packed bed reactor via chemical looping process. Frontiers of Environmental Science & Engineering, 2015, 9(6): 1117–1129
|
| [32] |
Ko E Y, Park E D, Seo K W, Lee H C, Lee D, Kim S. Pt-Ni/g-Al2O3 catalyst for the preferential CO oxidation in the hydrogen stream. Catalysis Letters, 2006, 110(3–4): 275–279
|
| [33] |
Yang X C, Lu Z G, Kang X C, Wei Y N. Effect of ZrO2 on the structure of NiO/CeO2/g-Al2O3 composite catalysts. Journal of Inorganic Materials, 2009, 24(1): 187–191
|
| [34] |
Kröcher O, Elsener M, Jacob E. A model gas study of ammonium formate, methanamide and guanidinium formate as alternative ammonia precursor compounds for the selective catalytic reduction of nitrogen oxides in diesel exhaust gas. Applied Catalysis B: Environmental, 2009, 88(1–2): 66–82
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg