An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity

Chaojie Jiang, Lifen Liu, John C. Crittenden

PDF(944 KB)
PDF(944 KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (4) : 15. DOI: 10.1007/s11783-016-0860-z
RESEARCH ARTICLE
RESEARCH ARTICLE

An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity

Author information +
History +

Abstract

A bio-electrochemical fuel cell reactor with cathodic Fe0/TiO2 generates electricity.

It destroys recalcitrant pollutants in cathode chamber without photocatalysis.

Fe0/TiO2 generates reactive oxygenated species in the dark or under photocatalysis.

Cathodic produced ROS (hydroxy radical/superoxide radical) can degrade tetracycline or dyes.

Electricity generation is enhanced by semiconductor catalyzed cathodic degradation of pollutants.

In this study, a new water treatment system that couples (photo-) electrochemical catalysis (PEC or EC) in a microbial fuel cell (MFC) was configured using a stainless-steel (SS) cathode coated with Fe0/TiO2. We examined the destruction of methylene blue (MB) and tetracycline. Fe0/TiO2 was prepared using a chemical reduction-deposition method and coated onto an SS wire mesh (500 mesh) using a sol technique. The anode generates electricity using microbes (bio-anode). Connected via wire and ohmic resistance, the system requires a short reaction time and operates at a low cost by effectively removing 94% MB (initial concentration 20 mg·L1) and 83% TOC/TOC0 under visible light illumination (50 W; 1.99 mW·cm2 for 120 min, MFC-PEC). The removal was similar even without light irradiation (MFC-EC). The EEo of the MFC-PEC system was approximately 0.675 kWh·m3·order1, whereas that of the MFC-EC system was zero. The system was able to remove 70% COD in tetracycline solution (initial tetracycline concentration 100 mg·L1) after 120 min of visible light illumination; without light, the removal was 15% lower. The destruction of MB and tetracycline in both traditional photocatalysis and photoelectrocatalysis systems was notably low. The electron spin-resonance spectroscopy (ESR) study demonstrated that ·OH was formed under visible light, and ·O2 was formed without light. The bio-electricity-activated O2 and ROS (reactive oxidizing species) generation by Fe0/TiO2 effectively degraded the pollutants. This cathodic degradation improved the electricity generation by accepting and consuming more electrons from the bio-anode.

Graphical abstract

Keywords

Bio-anode / Photocatalytic cathode / Fe0/TiO2 / ESR / Dye and antibiotics / Advanced oxidation

Cite this article

Download citation ▾
Chaojie Jiang, Lifen Liu, John C. Crittenden. An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity. Front. Environ. Sci. Eng., 2016, 10(4): 15 https://doi.org/10.1007/s11783-016-0860-z

References

[1]
Liu Y B, Li J H, Zhou B X, Li X J, Chen H C, Chen Q P, Wang Z S, Li L, Wang J L, Cai W M. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell. Water Research, 2011, 45(13): 3991–3998
CrossRef Pubmed Google scholar
[2]
Lin L, Wang H Y, Luo H M, Xu P. Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films. Journal of Photochemistry and Photobiology A Chemistry, 2015, 307–308: 88–98
CrossRef Google scholar
[3]
Chen Q P, Bai J, Li J H, Huang K, Li X J, Zhou B X, Cai W M. Aerated visible-light responsive photocatalytic fuel cell for wastewater treatment with producing sustainable electricity in neutral solution. Chemical Engineering Journal, 2014, 252: 89–94
CrossRef Google scholar
[4]
Lai B, Wang P, Li H R, Du Z W, Wang L J, Bi S C. Calcined polyaniline-iron composite as a high efficient cathodic catalyst in microbial fuel cells. Bioresource Technology, 2013, 131: 321–324
CrossRef Pubmed Google scholar
[5]
Li J Y, Li J H, Chen Q P, Bai J, Zhou B X. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell. Journal of Hazardous Materials, 2013, 262: 304–310
CrossRef Pubmed Google scholar
[6]
Jadhav D A, Ghadge A N, Ghangrekar M M. Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst. Bioresource Technology, 2015, 191: 110–116
CrossRef Pubmed Google scholar
[7]
Lee K Y, Ryu W S, Cho S I, Lim K H. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods. Water Research, 2015, 84: 43–48
CrossRef Pubmed Google scholar
[8]
Wang A J, Cheng H Y, Ren N Q, Cui D, Lin N, Wu W M. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Frontiers of Environmental Science and Engineering, 2012, 6(4): 569–574
CrossRef Google scholar
[9]
Liang P, Wei J C, Li M, Huang X. Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode. Frontiers of Environmental Science and Engineering, 2013, 7(6): 913–919
CrossRef Google scholar
[10]
Liu W F, Cheng S A, Sun D, Huang B, Chen J, Cen K F. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer. Biosensors & Bioelectronics, 2015, 72: 44–50
CrossRef Pubmed Google scholar
[11]
Liao Z H, Sun J Z, Sun D Z, Si R W, Yong Y C. Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells. Bioresource Technology, 2015, 192: 831–834
CrossRef Pubmed Google scholar
[12]
Xiao Y, Zheng Y, Wu S, Yang Z H, Zhao F. Nitrogen recovery from wastewater using microbial fuel cells. Frontiers of Environmental Science and Engineering, 2016, 10(1): 185–191
CrossRef Google scholar
[13]
Wang Z J, Zhang B G, Alistair G L B, Feng C Q, Ni J R. Utilization of single-chamber microbial fuel cells as renewable power sources for electrochemical degradation of nitrogen-containing organic compounds. Chemical Engineering Journal, 2015, 280: 99–105
CrossRef Google scholar
[14]
Tang W W, Chen X Y, Xia J, Gong J M, Zeng X P. Preparation of an Fe-doped visible-light-response TiO2 film electrodeand its photoelectrocatalytic activity. Materials Science and Engineering B, 2014, 187: 39–45
CrossRef Google scholar
[15]
Ding X, Ai Z H, Zhang L Z. A dual-cell wastewater treatment system with combining anodic visible light driven photoelectro-catalytic oxidation and cathodic electro-Fenton oxidation. Separation and Purification Technology, 2014, 125: 103–110
CrossRef Google scholar
[16]
Li J, Lv S, Liu Y, Bai J, Zhou B, Hu X. Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation. Journal of Hazardous Materials, 2013, 262: 482–488
CrossRef Pubmed Google scholar
[17]
Liu Y B, Li H, Zhou B X, Lv S B, Li X J, Chen H C, Chen Q P, Cai W M. Photoelectrocatalytic degradation of refractory organic compounds enhanced by a photocatalytic fuel cell. Applied Catalysis B: Environmental, 2012, 111–112: 485–491
CrossRef Google scholar
[18]
Xu S C, Pan S S, Xu Y, Luo Y Y, Zhang Y X, Li G H. Efficient removal of Cr(VI) from wastewater under sunlight by Fe(II)-doped TiO₂ spherical shell. Journal of Hazardous Materials, 2015, 283: 7–13
CrossRef Pubmed Google scholar
[19]
Chen C, Long M C, Zeng H, Cai W M, Zhou B X, Zhang J Y, Wu Y, Ding D W, Wu D Y. Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. Journal of Molecular Catalysis A Chemical, 2009, 314(1–2): 35–41
CrossRef Google scholar
[20]
Yao Y, Li K, Chen S, Ji J P, Wang Y L, Wang H W. Decolorization of Rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode. Chemical Engineering Journal, 2012, 187: 29–35
CrossRef Google scholar
[21]
Hsieh W P, Pan J R, Huang C, Su Y C, Juang Y J. Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron. Science of the Total Environment, 2010, 408(3): 672–679
CrossRef Pubmed Google scholar
[22]
Rodriguez S, Vasquez L, Costa D, Romero A, Santos A. Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere, 2014, 101: 86–92
CrossRef Pubmed Google scholar
[23]
Wang Z Q, Wen B, Hao Q Q, Liu L M, Zhou C, Mao X, Lang X, Yin W J, Dai D, Selloni A, Yang X. Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. Journal of the American Chemical Society, 2015, 137(28): 9146–9152
CrossRef Pubmed Google scholar
[24]
Xu Y L, Jia J P, Zhong D J, Wang Y L. Degradation of dye wastewater in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2/Ti anode. Chemical Engineering Journal, 2009, 150(2–3): 302–307
CrossRef Google scholar
[25]
Yang J, Cao M, Guo R, Jia J P. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water. Journal of Hazardous Materials, 2010, 184(1–3): 782–787
CrossRef Pubmed Google scholar
[26]
Kim J H, Park I S, Park J Y. Electricity generation and recovery of iron hydroxides using a single chamber fuel cell with iron anode and air-cathode for electrocoagulation. Applied Energy, 2015, 160: 18–27
CrossRef Google scholar
[27]
Liu L F, Chen F, Yang F L, Che Y S, Crittenden J. Photocatalytic degradation of 2,4-dichlorophenol using nanoscale Fe/TiO2. Chemical Engineering Journal, 2012, 181–182: 189–195
CrossRef Google scholar
[28]
Daneshvar N, Aber S, Seyed Dorraji M S, Khataee A R, Rasoulifard M H. Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separation and Purification Technology, 2007, 58(1): 91–98
CrossRef Google scholar
[29]
Muruganandham M, Selvam K, Swaminathan M. A comparative study of quantum yield and electrical energy per order (EEo) for advanced oxidative decolourisation of reactive azo dyes by UV light. Journal of Hazardous Materials, 2007, 144(1–2): 316–322
CrossRef Pubmed Google scholar
[30]
Daneshvar N, Aleboyeh A, Khataee A R. The evaluation of electrical energy per order (EEo) for photooxidative decolorization of four textile dye solutions by the kinetic model. Chemosphere, 2005, 59(6): 761–767
CrossRef Pubmed Google scholar
[31]
Behnajady M A, Vahid B, Modirshahla N, Shokri M. Evaluation of electrical energy per order (EEo) with kinetic modeling on the removal of Malachite Green by US/UV/H2O2 process. Desalination, 2009, 249(1): 99–103
CrossRef Google scholar
[32]
He C, Yu Y, Hu X F, Larbot A. Influence of silver doping on the photocatalytic activity of titania films. Applied Surface Science, 2002, 200(1–4): 239–247
CrossRef Google scholar
[33]
Atsushi K.A combination of Electron Spin Resonance spectroscopy/atom transfer radical polymerization (ESR/ATRP) techniques for fundamental investigation of radical polymerizations of (meth) acrylates. Polymer, 2015, 72: 253–263
[34]
Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63(12): 515–582
CrossRef Google scholar
[35]
Huang C, Hsieh W P, Pan J R, Chang S M. Characteristic of an innovative TiO2/Fe0 composite for treatment of azo dye. Separation and Purification Technology, 2007, 58(1): 152–158
CrossRef Google scholar
[36]
Jayanthi Kalaivani G, Suja S K. TiO2 (rutile) embedded inulin—A versatile bio-nanocomposite for photocatalytic degradation of methylene blue. Carbohydrate Polymers, 2016, 143: 51–60
CrossRef Pubmed Google scholar
[37]
Shestakova M, Graves J, Sitarz M, Sillanpää M. Optimization of Ti/Ta2O5–SnO2 electrodes and reaction parameters for electrocatalytic oxidation of methylene blue. Journal of Applied Electrochemistry, 2016, 46(3): 349–358
CrossRef Google scholar

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 21177018) and the Program of Introducing Talents of Discipline to Universities (B13012). The authors also appreciate the support from the Brook Byers Institute for Sustainable Systems, Hightower Chair and the Georgia Research Alliance at Georgia Institute of Technology.
Funding
 

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(944 KB)

Accesses

Citations

Detail

Sections
Recommended

/