A syntrophic propionate-oxidizing microflora and its bioaugmentation on anaerobic wastewater treatment for enhancing methane production and COD removal

Chong Liu , Jianzheng Li , Shuo Wang , Loring Nies

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (4) : 13

PDF (422KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (4) : 13 DOI: 10.1007/s11783-016-0856-8
RESEARCH ARTICLE
RESEARCH ARTICLE

A syntrophic propionate-oxidizing microflora and its bioaugmentation on anaerobic wastewater treatment for enhancing methane production and COD removal

Author information +
History +
PDF (422KB)

Abstract

Syntrophic propionate-oxidizing microflora B83 was enriched from anaerobic sludge.

The bioaugmentation of microflora B83 were evaluated from wastewater treatment.

Methane yield and COD removal were enhanced by bioaugmentation of microflora B83.

Hydrogen-producing acetogensis was a rate-limiting step in methane fermentation.

Methane fermentation process can be restricted and even destroyed by the accumulation of propionate because it is the most difficult to be anaerobically oxidized among the volatile fatty acids produced by acetogenesis. To enhance anaerobic wastewater treatment process for methane production and COD removal, a syntrophic propionate-oxidizing microflora B83 was obtained from an anaerobic activated sludge by enrichment with propionate. The inoculation of microflora B83, with a 1:9 ratio of bacteria number to that of the activated sludge, could enhance the methane production from glucose by 2.5 times. With the same inoculation dosage of the microflora B83, COD removal in organic wastewater treatment process was improved from 75.6% to 86.6%, while the specific methane production by COD removal was increased by 2.7 times. Hydrogen-producing acetogenesis appeared to be a rate-limiting step in methane fermentation, and the enhancement of hydrogen-producing acetogens in the anaerobic wastewater treatment process had improved not only the hydrogen-producing acetogenesis but also the acidogenesis and methanogenesis.

Graphical abstract

Keywords

Anaerobic wastewater treatment / Methane production / Hydrogen-producing acetogenesis / Methanogenesis / Rate-limiting step / Bioaugmentation

Cite this article

Download citation ▾
Chong Liu, Jianzheng Li, Shuo Wang, Loring Nies. A syntrophic propionate-oxidizing microflora and its bioaugmentation on anaerobic wastewater treatment for enhancing methane production and COD removal. Front. Environ. Sci. Eng., 2016, 10(4): 13 DOI:10.1007/s11783-016-0856-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gunaseelan V N. Anaerobic digestion of biomass for methane production: a review. Biomass and Bioenergy, 1997, 13(1): 83–114

[2]

Gou M, Zeng J, Wang H Z, Tang Y Q, Shigematsu T, Morimura S, Kida K. Microbial community structure and dynamics of starch-fed and glucose-fed chemostats during two years of continuous operation. Frontiers of Environmental Science & Engineering, 2016, 10(2): 368–380

[3]

Nielsen H B, Uellendahl H, Ahring B K. Regulation and optimization of the biogas process: propionate as a key parameter. Biomass and Bioenergy, 2007, 31(11): 820–830

[4]

Bhunia P, Ghangrekar M M. Statistical modeling and optimization of biomass granulation and COD removal in UASB reactors treating low strength wastewaters. Bioresource Technology, 2008, 99(10): 4229–4238

[5]

Feng J, Wang Y L, Ji X Y, Yuan D Q, Li H. Performance and bioparticle growth of anaerobic baffled reactor (ABR) fed with low-strength domestic sewage. Frontiers of Environmental Science & Engineering, 2015, 9(2): 352–364

[6]

Öztürk M. Conversion of acetate, propionate and butyrate to methane under thermophilic conditions in batch reactors. Water Research, 1991, 25(12): 1509–1513

[7]

Lange M, Ahring B K. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea. FEMS Microbiology Reviews, 2001, 25(5): 553–571

[8]

Rajhi H, Puyol D, Martínez M C, Díaz E E, Sanz J L. Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems. Frontiers of Environmental Science & Engineering, 2016, 10(3): 513–521

[9]

Stams A J, Plugge C M, Mirna M C. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews. Microbiology, 2009, 7(8): 568–577

[10]

Worm P, Stams A J M, Cheng X, Plugge C M. Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Microbiology, 2011, 157(1): 280–289

[11]

Zheng G, Li J, Zhao F, Zhang L, Wei L, Ban Q, Zhao Y. Effect of illumination on the hydrogen-production capability of anaerobic activated sludge. Frontiers of Environmental Science & Engineering, 2012, 6(1): 125–130

[12]

Daniel S L, Keith E S, Yang H, Lin Y S, Drake H L. Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the co-dependent O-demethylating activity. Biochemical and Biophysical Research Communications, 1991, 180(1): 416–422

[13]

Wang L, Zhou Q, Li F T. Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production. Biomass and Bioenergy, 2006, 30(2): 177–182

[14]

Gallert C, Winter J. Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester. Bioresource Technology, 2008, 99(1): 170–178

[15]

Mohan S V, Rao N C, Prasad K K, Sarma P N. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater. Process Biochemistry, 2005, 40(8): 2849–2857

[16]

Marone A, Massini G, Patriarca C, Signorini A, Varrone C, Izzo G. Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. International Journal of Hydrogen Energy, 2012, 37(7): 5612–5622

[17]

McInerney M J, Bryant M P. Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. Applied and Environmental Microbiology, 1981, 41(2): 346–354

[18]

De Bok F A M, Plugge C M, Stams A J M. Interspecies electron transfer in methanogenic propionate degrading consortia. Water Research, 2004, 38(6): 1368–1375

[19]

Friedrich M, Springer N, Ludwig W, Schink B. Phylogenetic positions of Desulfofustis glycolicus gen. nov., sp. nov., and Syntrophobotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid. International Journal of Systematic Bacteriology, 1996, 46(4): 1065–1069

[20]

Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H. Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(Pt 2): 771–779

[21]

Bruns A, Cypionka H, Overmann J. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Applied and Environmental Microbiology, 2002, 68(8): 3978–3987

[22]

Schoenborn L, Yates P S, Grinton B E, Hugenholtz P, Janssen P H. Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Applied and Environmental Microbiology, 2004, 70(7): 4363–4366

[23]

Martins M, Faleiro M L, Barros R J, Veríssimo A R, Barreiros M A, Costa M C. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. Journal of Hazardous Materials, 2009, 166(2–3): 706–713

[24]

Marchaim U, Krause C. Propionic to Acetic-acid ratios in overloaded anaerobic-digestion. Bioresource Technology, 1993, 43(3): 195–203

[25]

Ahring B K, Sandberg M, Angelidaki I. Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Applied Microbiology and Biotechnology, 1995, 43(3): 559–565

[26]

Van Lier J B, Martin J L S, Lettinga G. Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge. Water Research, 1996, 30(1): 199–207

[27]

Liu R R, Tian Q, Yang B, Chen J H. Hybrid anaerobic baffled reactor for treatment of desizing wastewater. International Journal of Environmental Science and Technology, 2010, 7(1): 111–118

[28]

Zhu G F, Li J Z, Wu P, Jin H Z, Wang Z. The performance and phase separated characteristics of an anaerobic baffled reactor treating soybean protein processing wastewater. Bioresource Technology, 2008, 99(17): 8027–8033

[29]

Altaf M, Naveena B, Venkateshwar M, Kumar E V, Reddy G. Single step fermentation of starch to L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract–optimization by RSM. Process Biochemistry, 2006, 41(2): 465–472

[30]

Turki S, Kraeim I B, Weeckers F, Thonart P, Kallel H. Isolation of bioactive peptides from tryptone that modulate lipase production in Yarrowia lipolytica. Process Biochemistry, 2006, 41(2): 465–472

[31]

Federation W E. American Public Health Association. Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, D C, USA, 2005

[32]

Dubois M, Gilles K A, Hamilton J K, Rebers P, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3): 350–356

[33]

Li J, Zheng G, He J, Chang S, Qin Z. Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor. Biotechnology Advances, 2009, 27(5): 573–577

[34]

Kalia A, Rattan A, Chopra P. A method for extraction of high-quality and high-quantity genomic DNA generally applicable to pathogenic bacteria. Analytical Biochemistry, 1999, 275(1): 1–5

[35]

Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos J L, Guwy A J, Kalyuzhnyi S, Jenicek P, van Lier J B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 2009, 59(5): 927–934

[36]

Pullammanappallil P C, Chynoweth D P, Lyberatos G, Svoronos S A. Stable performance of anaerobic digestion in the presence of a high concentration of propionic acid. Bioresource Technology, 2001, 78(2): 165–169

[37]

Liu Y, Whitman W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences, 2008, 1125(1): 171–189

[38]

Hill D T, Cobb S A, Bolte J P. Using volatile fatty-acid relationships to predict anaerobic digester failure. Transactions of the ASAE (United States), 1987, 30(2): 496–501

[39]

Hill D T, Holmberg R D. Long chain volatile fatty acid relationships in anaerobic digestion of swine waste. Biological Wastes, 1988, 23(3): 195–214

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (422KB)

3706

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/