On secondary new particle formation in China

Markku Kulmala , Tuukka Petäjä , Veli-Matti Kerminen , Joni Kujansuu , Taina Ruuskanen , Aijun Ding , Wei Nie , Min Hu , Zhibin Wang , Zhijun Wu , Lin Wang , Douglas R. Worsnop

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (5) : 08

PDF (755KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (5) : 08 DOI: 10.1007/s11783-016-0850-1
RESEARCH ARTICLE
RESEARCH ARTICLE

On secondary new particle formation in China

Author information +
History +
PDF (755KB)

Abstract

Formation of new atmospheric aerosol particles is a global phenomenon that has been observed to take place in even heavily-polluted environments. In China, new particle production has been observed at very high pollution levels (condensation sink about 0.1s1) in several megacities.

A holistic scientific understanding on the atmospheric phenomena associated with air quality as a whole, as well as on the connection between air quality and climate, is lacking at the moment.With a network of observation stations, we will be able to understand the interactions and feedbacks associated with the urban pollution mixture, and ultimately, are ready to make targeted strategies for the pollution control.

This paper summaries the recent advances in studying secondary new aerosol formation in China and shows how increased process-level understanding will help us to understand air quality-climate-weather interactions and how the feedbacks and interactions affect the air quality in highly-polluted environments such as those frequently encountered in Chinese megacities.

Formation of new atmospheric aerosol particles is a global phenomenon that has been observed to take place in even heavily-polluted environments. However, in all environments there appears to be a threshold value of the condensation sink (due to pre-existing aerosol particles) after which the formation rate of 3 nm particles is no longer detected. In China, new particle production has been observed at very high pollution levels (condensation sink about 0.1 s1) in several megacities, including Beijing, Shanghai and Nanjing as well as in Pearl River Delta (PRD). Here we summarize the recent findings obtained from these studies and discuss the various implications these findings will have on future research and policy.

Graphical abstract

Keywords

Aerosol particles / Heavily-polluted environments / Condensation sink / New particle production / Megacities

Cite this article

Download citation ▾
Markku Kulmala, Tuukka Petäjä, Veli-Matti Kerminen, Joni Kujansuu, Taina Ruuskanen, Aijun Ding, Wei Nie, Min Hu, Zhibin Wang, Zhijun Wu, Lin Wang, Douglas R. Worsnop. On secondary new particle formation in China. Front. Environ. Sci. Eng., 2016, 10(5): 08 DOI:10.1007/s11783-016-0850-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

IPCC. 2013. Climate Change 2013: The Physical Science Basis. Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Cambridge: Cambridge University Press, United Kingdom and New York, NY, USA, 1535

[2]

Hand J L, Malm W C. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. Journal of Geophysical Research, 2007, 112(D16): D16203

[3]

Lelieveld J, Evans J S, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015, 525(7569): 367–371

[4]

Kulmala M, Nieminen T, Nikandrova A, Lehtipalo K, Manninen H E, Kajos M K, Kolari P, Lauri A, Petäjä T, Krejci R, Hansson H C, Swietlicki E, Lindroth A, Christensen T R, Arneth A, Hari P, Bäck J, Vesala T, Kerminen V M. CO2-induced terrestrial climate feedback mechanism: From carbon sink to aerosol source and back. Boreal Environmental Research, 2014, 19(Suppl. B): 122–131

[5]

Kulmala M, Kerminen V M. On the formation and growth of atmospheric nanoparticles. Atmospheric Research, 2008, 90(2–4): 132–150

[6]

Kulmala M, Petäjä T, Ehn M, Thornton J, Sipilä M, Worsnop D R, Kerminen V M. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annual Review of Physical Chemistry, 2014b, 65(1): 21–37

[7]

Zhang R, Khalizov A, Wang L, Hu M, Xu W. Nucleation and growth of nanoparticles in the atmosphere. Chemical Reviews, 2012, 112(3): 1957–2011

[8]

Weber R J, Marti J J, McMurry P H, Eisele F L, Tanner D J, Jefferson A. Measured Atomospheric New Particle Formation Rates: Implications For Nucleation Mechanisms. Chemical Engineering Communications, 1996, 151(1): 53–64

[9]

Kulmala M, Lehtinen K E J, Laaksonen A. Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmospheric Chemistry and Physics, 2006, 6(3): 787–793

[10]

Kulmala M, Toivonen A, Mäkelä J, Laaksonen A. Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus. Series B, Chemical and Physical Meteorology, 1998, 50(5): 449–462

[11]

Vehkamäki H, Riipinen I. Thermodynamics and kinetics of atmospheric aerosol particle formation and growth. Chemical Society Reviews, 2012, 41(15): 5160–5173

[12]

Kulmala M, Kerminen V M, Anttila T, Laaksonen A, O’Dowd C D. Organic aerosol formation via sulphate cluster activation. Journal of Geophysical Research, 2004, 109(D4): n/a

[13]

Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen H E, Nieminen T, Petäjä T, Sipilä M, Schobesberger S, Rantala P, Franchin A, Jokinen T, Järvinen E, Äijälä M, Kangasluoma J, Hakala J, Aalto P P, Paasonen P, Mikkilä J, Vanhanen J, Aalto J, Hakola H, Makkonen U, Ruuskanen T, Mauldin R L 3rd, Duplissy J, Vehkamäki H, Bäck J, Kortelainen A, Riipinen I, Kurtén T, Johnston M V, Smith J N, Ehn M, Mentel T F, Lehtinen K E, Laaksonen A, Kerminen V M, Worsnop D R. Direct observations of atmospheric aerosol nucleation. Science, 2013, 339(6122): 943–946

[14]

Kerminen V M, Paramonov M, Anttila T, Riipinen I, Fountoukis C, Korhonen H, Asmi E, Laakso L, Lihavainen H, Swietlicki E, Svenningsson B, Asmi A, Pandis S N, Kulmala M, Petäjä T. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmospheric Chemistry and Physics, 2012, 12(24): 12037–12059

[15]

Guo S, Hua M, Zamorab M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z J, Shao M, Zeng L M, Molinac M J, Zhang R Y. Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences of the United States of America, 2014, 17373–17378

[16]

Huang R J, Zhang Y, Bozzetti C, Ho K F, Cao J J, Han Y, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, El Haddad I, Prévôt A S H. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514(7521): 218–222

[17]

Wu Z J, Hu M, Liu S, Wehner B, Bauer S, Ma ßling A, Wiedensohler A, Petäjä T, Dal Maso M, Kulmala M. New particle formation in Beijing, China: Statistical analysis of a 1-year data set. Journal of Geophysical Research, D, Atmospheres, 2007, 112: D09209

[18]

Xiao S, Wang M Y, Yao L, Kulmala M, Zhou B, Yang X, Chen J M, Wang D F, Fu Q Y, Worsnop D R, Wang L. Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmospheric Chemistry and Physics, 2015, 15(4): 1769–1781

[19]

Nie W, Ding A, Wang T, Kerminen V M, George C, Xue L, Wang W, Zhang Q, Petäjä T, Qi X, Gao X, Wang X, Yang X, Fu C, Kulmala M. Polluted dust promotes new particle formation and growth. Scientific Reports, 2014, 4: 6634

[20]

Xie Y, Ding A, Nie W, Mao H, Qi X, Huang X, Xu Z, Kerminen V M, Petäjä T, Chi X, Virkkula A, Boy M, Xue L, Guo J, Sun J, Yang X, Kulmala M, Fu C. Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station. Journal of Geophysical Research, D, Atmospheres, 2015, 120(24): 12679–12694

[21]

Kulmala M. Atmospheric chemistry: China’s choking cocktail. Nature, 2015, 526(7574): 497–499

[22]

Fiore A M, Naik V, Spracklen D V, Steiner A, Unger N, Prather M, Bergmann D, Cameron-Smith P J, Cionni I, Collins W J, Dalsøren S, Eyring V, Folberth G A, Ginoux P, Horowitz L W, Josse B, Lamarque J F, MacKenzie I A, Nagashima T, O’Connor F M, Righi M, Rumbold S T, Shindell D T, Skeie R B, Sudo K, Szopa S, Takemura T, Zeng G. Global air quality and climate. Chemical Society Reviews, 2012, 41(19): 6663–6683

[23]

Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier van der Gon H, Facchini M C, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik J G, Spracklen D V, Vignati E, Wild M, Williams M, Gilardoni S. Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15(14): 8217–8299

[24]

Hari P, Petäjä T, Bäck J, Kerminen V M, Lappalainen H K, Vihma T, Laurila T, Viisanen Y, Vesala T, Kulmala M. Conceptual design of a measurement network of the global change. Atmospheric Chemistry and Physics, 2016, 16(2): 1017–1028

[25]

Lin P, Hu M, Wu Z, Niu Y, Zhu T. Marine aerosol size distributions in the springtime over China adjacent seas. Atmospheric Environment, 2007, 41(32): 6784–6796

[26]

Liu S, Hu M, Wu Z J, Wehner B, Wiedensohler A, Cheng Y F. Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China. Atmospheric Environment, 2008, 42(25): 6275–6283

[27]

Gong Y G, Hu M, Cheng Y, Su H, Yue D, Liu F, Wiedensohler A, Wang Z, Kalesse H, Liu S, Wu Z, Xiao K, Mi P, Zhang Y. Competition of coagulation sink and source rate: New particle formation in the Pearl River Delta of China. Atmospheric Environment, 2010, 44(27): 3278–3285

[28]

Yue D L, Hu M, Zhang R Y, Wang Z B, Zheng J, Wu Z J, Wiedensohler A, He L Y, Huang X F, Zhu T. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing. Atmospheric Chemistry and Physics, 2010, 10(10): 4953–4960

[29]

Wu Z J, Hu M, Yue D L, Liu S, Wehner B, Wiedensohler A. Evolution of particle number size distribution in an urban atmosphere during episodes of heavy pollution and new particle formation. Science. China Earth Sciences, 2011, 54: 1772–1778

[30]

Yue D L, Hu M, Zhang R Y, Wu Z J, Su H, Wang Z B, Peng J F, He L Y, Huang X F, Gong Y G, Wiedensohler A. Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmospheric Environment, 2011, 45(33): 6070–6077

[31]

Wang Z B, Hu M, Mogensen D, Yue D L, Zheng J, Zhang R Y, Liu Y, Yuan B, Li X, Shao M, Zhou L, Wu Z J, Wiedensohler A, Boy M. The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China. Atmospheric Chemistry and Physics, 2013a, 13(21): 11157–11167

[32]

Yue D L, Hu M, Wang Z B, Wen M T, Guo S, Zhong L J, Wiedensohler A, Zhang Y H. Comparison of particle number size distributions and new particle formation between the urban and rural sites in the PRD region, China. Atmospheric Environment, 2013, 76: 181–188

[33]

Peng J F, Hu M, Wang Z B, Huang X F, Kumar P, Wu Z J, Guo S, Yue D L, Shang D J, Zheng Z, He L Y. Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production. Atmospheric Chemistry and Physics, 2014, 14(18): 10249–10265

[34]

Qi X, Ding A J, Nie W, Petäjä T, Kerminen V M, Herrmann E, Xie Y N, Zheng L F, Manninen H, Aalto P, Sun J N, Xu Z N, Chi X G, Huang X, Boy M, Virkkula A, Yang X Q, Fu C B, Kulmala M. Aerosol size distribution and new particle formation in western Yangtze River Delta of China: two-year measurement at the SORPES station. Atmospheric Chemistry and Physics Discussion, 2015, 15(8): 12491–12537

[35]

Wehner B, Wiedensohler A, Tuch T M, Wu Z J, Hu M, Slanina J, Kiang C S. Variability of the aerosol number size distribution in Beijing, China: New particle formation, dust storms, and high continental background. Geophysical Research Letters, 2004, 31(22): L22108

[36]

Wang Z B, Hu M, Wu Z J, Yue D L, He L Y, Huang X F, Liu X G, Wiedensohler A. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing. Atmospheric Chemistry and Physics, 2013d, 13(20): 10159–10170

[37]

Wang Z B, Hu M, Wu Z J, Yue D L. Research on the Formation Mechanisms of New Particles in the Atmosphere. Acta Chimica Sinica, 2013c, 71(04): 519–527

[38]

Yue D L, Hu M, Wu Z J, Wang Z B, Guo S, Wehner B, Nowak A, Achtert P, Wiedensohler A, Jung J S, Kim Y J, Liu S C. Characteristics of aerosol size distributions and new particle formation in the summer in Beijing. Journal of Geophysical Research, D, Atmospheres, 2009, 114: D00G12

[39]

Wang Z B, Hu M, Yue D L, Zheng J, Zhang R Y, Wiedensohler A, Wu Z J, Nieminen T, Boy M. Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case. Atmospheric Chemistry and Physics, 2011, 11(24): 12663–12671

[40]

Wang Z B, Hu M, Pei X Y, Zhang R Y, Paasonen P, Zheng J, Yue D L, Wu Z J, Boy M, Wiedensohler A. Connection of organics to atmospheric new particle formation and growth at an urban site of Beijing. Atmospheric Environment, 2015, 103: 7–17

[41]

Kulmala M, Dal Maso M, Mäkelä J M, Pirjola L, Väkevä M, Aalto P, Miikkulainen P, Hämeri K, O'Dowd C D. On the formation, growth and composition of nucleation mode particles. Tellus, 2001, 53B(4): 479–480

[42]

Kulmala M, Petäjä T, Mönkkönen P, Koponen I K, Dal Maso M, Aalto P P, Lehtinen K E J, Kerminen V M. On the growth of nucleation mode particles: source rates of condensable vapor in polluted and clean environments. Atmospheric Chemistry and Physics, 2005, 5(2): 409–416

[43]

Wang Z B, Hu M, Sun J Y, Wu Z J, Yue D L, Shen X J, Zhang Y M, Pei X Y, Cheng Y F, Wiedensohler A. Characteristics of regional new particle formation in urban and regional background environments in the North China Plain. Atmospheric Chemistry and Physics, 2013, 13(24): 12495–12506

[44]

Wang Z B, Hu M, Yue D L, He L Y, Huang X F, Yang Q, Zheng J, Zhang R Y, Zhang Y H. New particle formation in the presence of a strong biomass burning episode at a downwind rural site in PRD, China. Tellus. Series B, Chemical and Physical Meteorology, 2013, 65(1): 97–112

[45]

Ding A, Fu C, Yang X, Sun J, Zheng L, Xie Y, Herrmann E, Nie W, Petäjä T, Kerminen V M, Kulmala M. Ozone and fine particle in the western Yangtze river delta: an overview of 1 yr data at the SORPES station. Atmospheric Chemistry and Physics, 2013a, 13(11): 5813–5830

[46]

Ding A J, Fu C B, Yang X Q, Sun J N, Petäjä T, Kerminen V M, Wang T, Xie Y N, Herrmann E, Zheng L F, Nie W, Wei L W, Kulmala M. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in the eastern China. Atmospheric Chemistry and Physics, 2013b, 13(20): 10545–10554

[47]

Dupart Y, King S M, Nekat B, Nowak A, Wiedensohler A, Herrmann H, David G, Thomas B, Miffre A, Rairoux P, D’Anna B, George C. Mineral dust photochemistry induces nucleation events in the presence of SO2. Proceedings of the National Academy of Sciences, 2012,20842–20847

[48]

Kerminen V M, Pirjola L, Kulmala M. How significantly does coagulational scavenging limit atmospheric particle production? Journal of Geophysical Research, 2001, 106(D20): 24119–24126

[49]

Lehtinen K E J, Dal Maso M, Kulmala M, Kerminen V M. Estimating nucleation rates from apparent particle formation rates and vice-versa: Revised formulation of the Kerminen-Kulmala equation. Journal of Aerosol Science, 2007, 38(9): 988–994

[50]

Nie W, Ding A J, Xie Y N, Xu Z, Mao H, Kerminen V M, Zheng L F, Qi X M, Huang X, Yang X Q, Sun J N, Herrmann E, Petäjä T, Kulmala M, Fu C B. Influence of biomass burning plumes on HONO chemistry in eastern China. Atmospheric Chemistry and Physics, 2015, 15(3): 1147–1159

[51]

He H, Wang Y, Ma Q, Ma J, Chu B, Ji D, Tang G, Liu C, Zhang H, Hao J. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports, 2014, 4: 4172

[52]

Vanhanen J, Mikkilä J, Lehtipalo K, Sipilä M, Manninen H E, Siivola E, Petäjä T, Kulmala M. Particle size magnifier for nano-CN Detection. Aerosol Science and Technology, 2011, 45(4): 533–542

[53]

Kulmala M, Riipinen I, Sipilä M, Manninen H E, Petäjä T, Junninen H, Maso M D, Mordas G, Mirme A, Vana M, Hirsikko A, Laakso L, Harrison R M, Hanson I, Leung C, Lehtinen K E J, Kerminen V M. Toward direct measurement of atmospheric nucleation. Science, 2007, 318(5847): 89–92

[54]

Tammet H. Symmetric Inclined Grid Mobility Analyzer for the Measurement of Charged Clusters and Fine Nanoparticles in Atmospheric Air. Aerosol Science and Technology, 2011, 45(4): 468–479

[55]

Gagné S, Nieminen T, Kurtén T, Manninen H E, Petäjä T, Laakso L, Kerminen V M, Boy M, Kulmala M. Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland. Atmospheric Chemistry and Physics, 2010, 10(8): 3743–3757

[56]

Kulmala M, Riipinen I, Nieminen T, Hulkkonen M, Sogacheva L, Manninen H E, Paasonen P, Petäjä T, Dal Maso M, Aalto P P, Viljanen A, Usoskin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Härrak U, Plaß-Dülmer C. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmospheric Chemistry and Physics, 2010, 10(4): 1885–1898

[57]

Junninen H, Ehn M, Petäjä T, Luosujärvi L, Kotiaho T, Kostiainen R, Rohner U, Gonin M, Fuhrer K, Kulmala M, Worsnop D R. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmospheric Measurement Techniques, 2010, 3(4): 1039–1053

[58]

Jokinen T, Sipilä M, Junninen H, Ehn M, Lönn G, Hakala J, Petäjä T, Mauldin R L III, Kulmala M, Worsnop D R. Atmospheric sulfuric acid and neutral cluster measurements using CI-Api-TOF. Atmospheric Chemistry and Physics, 2012, 12(9): 4117–4125

[59]

Petäjä T, Mauldin R L III, Kosciuch E, McGrath J, Nieminen T, Paasonen P, Boy M, Adamov A, Kotiaho T, Kulmala M. Sulfuric acid and OH concentrations in a boreal forest site. Atmospheric Chemistry and Physics, 2009, 9(19): 7435–7448

[60]

Sipilä M, Berndt T, Petäjä T, Brus D, Vanhanen J, Stratmann F, Patokoski J, Mauldin R L 3rd, Hyvärinen A P, Lihavainen H, Kulmala M. The role of sulfuric acid in atmospheric nucleation. Science, 2010, 327(5970): 1243–1246

[61]

Kirkby J, Curtius J, Almeida J, Dunne E, Duplissy J, Ehrhart S, Franchin A, Gagné S, Ickes L, Kürten A, Kupc A, Metzger A, Riccobono F, Rondo L, Schobesberger S, Tsagkogeorgas G, Wimmer D, Amorim A, Bianchi F, Breitenlechner M, David A, Dommen J, Downard A, Ehn M, Flagan R C, Haider S, Hansel A, Hauser D, Jud W, Junninen H, Kreissl F, Kvashin A, Laaksonen A, Lehtipalo K, Lima J, Lovejoy E R, Makhmutov V, Mathot S, Mikkilä J, Minginette P, Mogo S, Nieminen T, Onnela A, Pereira P, Petäjä T, Schnitzhofer R, Seinfeld J H, Sipilä M, Stozhkov Y, Stratmann F, Tomé A, Vanhanen J, Viisanen Y, Vrtala A, Wagner P E, Walther H, Weingartner E, Wex H, Winkler P M, Carslaw K S, Worsnop D R, Baltensperger U, Kulmala M. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476(7361): 429–433

[62]

Almeida J, Schobesberger S, Kürten A, Ortega I K, Kupiainen-Määttä O, Praplan A P, Adamov A, Amorim A, Bianchi F, Breitenlechner M, David A, Dommen J, Donahue N M, Downard A, Dunne E, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Guida R, Hakala J, Hansel A, Heinritzi M, Henschel H, Jokinen T, Junninen H, Kajos M, Kangasluoma J, Keskinen H, Kupc A, Kurtén T, Kvashin A N, Laaksonen A, Lehtipalo K, Leiminger M, Leppä J, Loukonen V, Makhmutov V, Mathot S, McGrath M J, Nieminen T, Olenius T, Onnela A, Petäjä T, Riccobono F, Riipinen I, Rissanen M, Rondo L, Ruuskanen T, Santos F D, Sarnela N, Schallhart S, Schnitzhofer R, Seinfeld J H, Simon M, Sipilä M, Stozhkov Y, Stratmann F, Tomé A, Tröstl J, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Virtanen A, Vrtala A, Wagner P E, Weingartner E, Wex H, Williamson C, Wimmer D, Ye P, Yli-Juuti T, Carslaw K S, Kulmala M, Curtius J, Baltensperger U, Worsnop D R, Vehkamäki H, Kirkby J. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature, 2013, 502(7471): 359–363

[63]

Petäjä T, Sipilä M, Paasonen P, Nieminen T, Kurtén T, Ortega I K, Stratmann F, Vehkamäki H, Berndt T, Kulmala M. Experimental observation of strongly bound dimers of sulfuric acid: application to nucleation in the atmosphere. Physical Review Letters, 2011, 106(22): 228302

[64]

Ehn M, Thornton J A, Kleist E, Sipilä M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I H, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurtén T, Nielsen L B, Jørgensen S, Kjaergaard H G, Canagaratna M, Maso M D, Berndt T, Petäjä T, Wahner A, Kerminen V M, Kulmala M, Worsnop D R, Wildt J, Mentel T F. A large source of low-volatility secondary organic aerosol. Nature, 2014, 506(7489): 476–479

[65]

Riccobono F, Schobesberger S, Scott C E, Dommen J, Ortega I K, Rondo L, Almeida J, Amorim A, Bianchi F, Breitenlechner M, David A, Downard A, Dunne E M, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Hansel A, Junninen H, Kajos M, Keskinen H, Kupc A, Kürten A, Kvashin A N, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Nieminen T, Onnela A, Petäjä T, Praplan A P, Santos F D, Schallhart S, Seinfeld J H, Sipilä M, Spracklen D V, Stozhkov Y, Stratmann F, Tomé A, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Vrtala A, Wagner P E, Weingartner E, Wex H, Wimmer D, Carslaw K S, Curtius J, Donahue N M, Kirkby J, Kulmala M, Worsnop D R, Baltensperger U. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science, 2014, 344(6185): 717–721

[66]

Mauldin R L 3rd, Berndt T, Sipilä M, Paasonen P, Petäjä T, Kim S, Kurtén T, Stratmann F, Kerminen V M, Kulmala M. A new atmospherically relevant oxidant of sulphur dioxide. Nature, 2012, 488(7410): 193–196

[67]

Taipale R, Sarnela N, Rissanen M, Junninen H, Rantala P, Korhonen F, Siivola E, Berndt T, Kulmala M, Mauldin III R L, Petäjä T, Sipilä M.New instrument for measuring atmospheric concetrations of non-OH oxidants of SO2. Boreal Environment Research, 2014,19(B), 55–70

[68]

Mauldin R L III, Rissanen M P, Petäjä T, Kulmala M. Furthering information from OH and HO2+RO2 observations using a high resolution time of flight mass spectrometer. Atmospheric Measurement Techniques, 2016 doi:10.5194/amt-2015-398

[69]

Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fjäraa A M, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren J A, Swietlicki E, Williams P, Roldin P, Quincey P, Hüglin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Grüning C, Faloon K, Beddows D, Harrison R, Monahan C, Jennings S G, O’Dowd C D, Marinoni A, Horn H G, Keck L, Jiang J, Scheckman J, McMurry P H, Deng Z, Zhao C S, Moerman M, Henzing B, de Leeuw G, Löschau G, Bastian S. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques, 2012, 5(3): 657–685

[70]

Hennessy S, Murphy P. The Potential for Collaborative Problem Solving in Design and Technology. International Journal of Technology and Design Education, 1999, 9(1): 1–36

[71]

Nordic Climate Change Research 2009. NordForsk Policy Briefs 2009–8. Mandag Morgen, 2009

[72]

Hari P, Kulmala M.Station for Measuring Ecosystem – Atmosphere Relations (SMEAR II). Environmental Research, 2005, 10(5): 315–322

[73]

Lappalainen H K. Pan-Eurasian Experiment (PEEX): Towards holistic understanding of the feedbacks and interactions in the land- atmosphere- ocean- society continuum in the Northern Eurasian region. Atmospheric Chemistry and Physics- PEEX Special Issue, 2016

[74]

Lappalainen H K. Pan-Eurasian Experiment (PEEX): Towards holistic understanding of the feedbacks and interactions in the land- atmosphere- ocean- society continuum in the Northern Eurasian region. Atmospheric Physic and Chemistry Dissussions (in review)

[75]

Tang D, Wang C, Nie J, Chen R, Niu Q, Kan H, Chen B, Perera F. Health benefits of improving air quality in Taiyuan, China. Environment International, 2014, 73: 235–242

[76]

Haines A, McMichael A J, Smith K R, Roberts I, Woodcock J, Markandya A, Armstrong B G, Campbell-Lendrum D, Dangour A D, Davies M, Bruce N, Tonne C, Barrett M, Wilkinson P. Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers. Lancet, 2009, 374(9707): 2104–2114

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (755KB)

3060

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/