On secondary new particle formation in China

Markku Kulmala, Tuukka Petäjä, Veli-Matti Kerminen, Joni Kujansuu, Taina Ruuskanen, Aijun Ding, Wei Nie, Min Hu, Zhibin Wang, Zhijun Wu, Lin Wang, Douglas R. Worsnop

PDF(755 KB)
PDF(755 KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (5) : 8. DOI: 10.1007/s11783-016-0850-1
RESEARCH ARTICLE
RESEARCH ARTICLE

On secondary new particle formation in China

Author information +
History +

Abstract

Formation of new atmospheric aerosol particles is a global phenomenon that has been observed to take place in even heavily-polluted environments. In China, new particle production has been observed at very high pollution levels (condensation sink about 0.1s1) in several megacities.

A holistic scientific understanding on the atmospheric phenomena associated with air quality as a whole, as well as on the connection between air quality and climate, is lacking at the moment.With a network of observation stations, we will be able to understand the interactions and feedbacks associated with the urban pollution mixture, and ultimately, are ready to make targeted strategies for the pollution control.

This paper summaries the recent advances in studying secondary new aerosol formation in China and shows how increased process-level understanding will help us to understand air quality-climate-weather interactions and how the feedbacks and interactions affect the air quality in highly-polluted environments such as those frequently encountered in Chinese megacities.

Formation of new atmospheric aerosol particles is a global phenomenon that has been observed to take place in even heavily-polluted environments. However, in all environments there appears to be a threshold value of the condensation sink (due to pre-existing aerosol particles) after which the formation rate of 3 nm particles is no longer detected. In China, new particle production has been observed at very high pollution levels (condensation sink about 0.1 s1) in several megacities, including Beijing, Shanghai and Nanjing as well as in Pearl River Delta (PRD). Here we summarize the recent findings obtained from these studies and discuss the various implications these findings will have on future research and policy.

Graphical abstract

Keywords

Aerosol particles / Heavily-polluted environments / Condensation sink / New particle production / Megacities

Cite this article

Download citation ▾
Markku Kulmala, Tuukka Petäjä, Veli-Matti Kerminen, Joni Kujansuu, Taina Ruuskanen, Aijun Ding, Wei Nie, Min Hu, Zhibin Wang, Zhijun Wu, Lin Wang, Douglas R. Worsnop. On secondary new particle formation in China. Front. Environ. Sci. Eng., 2016, 10(5): 8 https://doi.org/10.1007/s11783-016-0850-1

References

[1]
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Cambridge: Cambridge University Press, United Kingdom and New York, NY, USA, 1535
[2]
Hand J L, Malm W C. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. Journal of Geophysical Research, 2007, 112(D16): D16203
CrossRef Google scholar
[3]
Lelieveld J, Evans J S, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015, 525(7569): 367–371
CrossRef Pubmed Google scholar
[4]
Kulmala M, Nieminen T, Nikandrova A, Lehtipalo K, Manninen H E, Kajos M K, Kolari P, Lauri A, Petäjä T, Krejci R, Hansson H C, Swietlicki E, Lindroth A, Christensen T R, Arneth A, Hari P, Bäck J, Vesala T, Kerminen V M. CO2-induced terrestrial climate feedback mechanism: From carbon sink to aerosol source and back. Boreal Environmental Research, 2014, 19(Suppl. B): 122–131
[5]
Kulmala M, Kerminen V M. On the formation and growth of atmospheric nanoparticles. Atmospheric Research, 2008, 90(2–4): 132–150
CrossRef Google scholar
[6]
Kulmala M, Petäjä T, Ehn M, Thornton J, Sipilä M, Worsnop D R, Kerminen V M. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annual Review of Physical Chemistry, 2014b, 65(1): 21–37
CrossRef Pubmed Google scholar
[7]
Zhang R, Khalizov A, Wang L, Hu M, Xu W. Nucleation and growth of nanoparticles in the atmosphere. Chemical Reviews, 2012, 112(3): 1957–2011
CrossRef Pubmed Google scholar
[8]
Weber R J, Marti J J, McMurry P H, Eisele F L, Tanner D J, Jefferson A. Measured Atomospheric New Particle Formation Rates: Implications For Nucleation Mechanisms. Chemical Engineering Communications, 1996, 151(1): 53–64
CrossRef Google scholar
[9]
Kulmala M, Lehtinen K E J, Laaksonen A. Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmospheric Chemistry and Physics, 2006, 6(3): 787–793
CrossRef Google scholar
[10]
Kulmala M, Toivonen A, Mäkelä J, Laaksonen A. Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus. Series B, Chemical and Physical Meteorology, 1998, 50(5): 449–462
CrossRef Google scholar
[11]
Vehkamäki H, Riipinen I. Thermodynamics and kinetics of atmospheric aerosol particle formation and growth. Chemical Society Reviews, 2012, 41(15): 5160–5173
CrossRef Pubmed Google scholar
[12]
Kulmala M, Kerminen V M, Anttila T, Laaksonen A, O’Dowd C D. Organic aerosol formation via sulphate cluster activation. Journal of Geophysical Research, 2004, 109(D4): n/a
CrossRef Google scholar
[13]
Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen H E, Nieminen T, Petäjä T, Sipilä M, Schobesberger S, Rantala P, Franchin A, Jokinen T, Järvinen E, Äijälä M, Kangasluoma J, Hakala J, Aalto P P, Paasonen P, Mikkilä J, Vanhanen J, Aalto J, Hakola H, Makkonen U, Ruuskanen T, Mauldin R L 3rd, Duplissy J, Vehkamäki H, Bäck J, Kortelainen A, Riipinen I, Kurtén T, Johnston M V, Smith J N, Ehn M, Mentel T F, Lehtinen K E, Laaksonen A, Kerminen V M, Worsnop D R. Direct observations of atmospheric aerosol nucleation. Science, 2013, 339(6122): 943–946
CrossRef Pubmed Google scholar
[14]
Kerminen V M, Paramonov M, Anttila T, Riipinen I, Fountoukis C, Korhonen H, Asmi E, Laakso L, Lihavainen H, Swietlicki E, Svenningsson B, Asmi A, Pandis S N, Kulmala M, Petäjä T. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmospheric Chemistry and Physics, 2012, 12(24): 12037–12059
CrossRef Google scholar
[15]
Guo S, Hua M, Zamorab M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z J, Shao M, Zeng L M, Molinac M J, Zhang R Y. Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences of the United States of America, 2014, 17373–17378
[16]
Huang R J, Zhang Y, Bozzetti C, Ho K F, Cao J J, Han Y, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, El Haddad I, Prévôt A S H. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514(7521): 218–222
Pubmed
[17]
Wu Z J, Hu M, Liu S, Wehner B, Bauer S, Ma ßling A, Wiedensohler A, Petäjä T, Dal Maso M, Kulmala M. New particle formation in Beijing, China: Statistical analysis of a 1-year data set. Journal of Geophysical Research, D, Atmospheres, 2007, 112: D09209
[18]
Xiao S, Wang M Y, Yao L, Kulmala M, Zhou B, Yang X, Chen J M, Wang D F, Fu Q Y, Worsnop D R, Wang L. Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmospheric Chemistry and Physics, 2015, 15(4): 1769–1781
CrossRef Google scholar
[19]
Nie W, Ding A, Wang T, Kerminen V M, George C, Xue L, Wang W, Zhang Q, Petäjä T, Qi X, Gao X, Wang X, Yang X, Fu C, Kulmala M. Polluted dust promotes new particle formation and growth. Scientific Reports, 2014, 4: 6634
CrossRef Pubmed Google scholar
[20]
Xie Y, Ding A, Nie W, Mao H, Qi X, Huang X, Xu Z, Kerminen V M, Petäjä T, Chi X, Virkkula A, Boy M, Xue L, Guo J, Sun J, Yang X, Kulmala M, Fu C. Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station. Journal of Geophysical Research, D, Atmospheres, 2015, 120(24): 12679–12694
CrossRef Google scholar
[21]
Kulmala M. Atmospheric chemistry: China’s choking cocktail. Nature, 2015, 526(7574): 497–499
CrossRef Pubmed Google scholar
[22]
Fiore A M, Naik V, Spracklen D V, Steiner A, Unger N, Prather M, Bergmann D, Cameron-Smith P J, Cionni I, Collins W J, Dalsøren S, Eyring V, Folberth G A, Ginoux P, Horowitz L W, Josse B, Lamarque J F, MacKenzie I A, Nagashima T, O’Connor F M, Righi M, Rumbold S T, Shindell D T, Skeie R B, Sudo K, Szopa S, Takemura T, Zeng G. Global air quality and climate. Chemical Society Reviews, 2012, 41(19): 6663–6683
CrossRef Pubmed Google scholar
[23]
Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier van der Gon H, Facchini M C, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik J G, Spracklen D V, Vignati E, Wild M, Williams M, Gilardoni S. Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15(14): 8217–8299
CrossRef Google scholar
[24]
Hari P, Petäjä T, Bäck J, Kerminen V M, Lappalainen H K, Vihma T, Laurila T, Viisanen Y, Vesala T, Kulmala M. Conceptual design of a measurement network of the global change. Atmospheric Chemistry and Physics, 2016, 16(2): 1017–1028
CrossRef Google scholar
[25]
Lin P, Hu M, Wu Z, Niu Y, Zhu T. Marine aerosol size distributions in the springtime over China adjacent seas. Atmospheric Environment, 2007, 41(32): 6784–6796
CrossRef Google scholar
[26]
Liu S, Hu M, Wu Z J, Wehner B, Wiedensohler A, Cheng Y F. Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China. Atmospheric Environment, 2008, 42(25): 6275–6283
CrossRef Google scholar
[27]
Gong Y G, Hu M, Cheng Y, Su H, Yue D, Liu F, Wiedensohler A, Wang Z, Kalesse H, Liu S, Wu Z, Xiao K, Mi P, Zhang Y. Competition of coagulation sink and source rate: New particle formation in the Pearl River Delta of China. Atmospheric Environment, 2010, 44(27): 3278–3285
CrossRef Google scholar
[28]
Yue D L, Hu M, Zhang R Y, Wang Z B, Zheng J, Wu Z J, Wiedensohler A, He L Y, Huang X F, Zhu T. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing. Atmospheric Chemistry and Physics, 2010, 10(10): 4953–4960
CrossRef Google scholar
[29]
Wu Z J, Hu M, Yue D L, Liu S, Wehner B, Wiedensohler A. Evolution of particle number size distribution in an urban atmosphere during episodes of heavy pollution and new particle formation. Science. China Earth Sciences, 2011, 54: 1772–1778
CrossRef Google scholar
[30]
Yue D L, Hu M, Zhang R Y, Wu Z J, Su H, Wang Z B, Peng J F, He L Y, Huang X F, Gong Y G, Wiedensohler A. Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmospheric Environment, 2011, 45(33): 6070–6077
CrossRef Google scholar
[31]
Wang Z B, Hu M, Mogensen D, Yue D L, Zheng J, Zhang R Y, Liu Y, Yuan B, Li X, Shao M, Zhou L, Wu Z J, Wiedensohler A, Boy M. The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China. Atmospheric Chemistry and Physics, 2013a, 13(21): 11157–11167
CrossRef Google scholar
[32]
Yue D L, Hu M, Wang Z B, Wen M T, Guo S, Zhong L J, Wiedensohler A, Zhang Y H. Comparison of particle number size distributions and new particle formation between the urban and rural sites in the PRD region, China. Atmospheric Environment, 2013, 76: 181–188
CrossRef Google scholar
[33]
Peng J F, Hu M, Wang Z B, Huang X F, Kumar P, Wu Z J, Guo S, Yue D L, Shang D J, Zheng Z, He L Y. Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production. Atmospheric Chemistry and Physics, 2014, 14(18): 10249–10265
CrossRef Google scholar
[34]
Qi X, Ding A J, Nie W, Petäjä T, Kerminen V M, Herrmann E, Xie Y N, Zheng L F, Manninen H, Aalto P, Sun J N, Xu Z N, Chi X G, Huang X, Boy M, Virkkula A, Yang X Q, Fu C B, Kulmala M. Aerosol size distribution and new particle formation in western Yangtze River Delta of China: two-year measurement at the SORPES station. Atmospheric Chemistry and Physics Discussion, 2015, 15(8): 12491–12537
CrossRef Google scholar
[35]
Wehner B, Wiedensohler A, Tuch T M, Wu Z J, Hu M, Slanina J, Kiang C S. Variability of the aerosol number size distribution in Beijing, China: New particle formation, dust storms, and high continental background. Geophysical Research Letters, 2004, 31(22): L22108
CrossRef Google scholar
[36]
Wang Z B, Hu M, Wu Z J, Yue D L, He L Y, Huang X F, Liu X G, Wiedensohler A. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing. Atmospheric Chemistry and Physics, 2013d, 13(20): 10159–10170
CrossRef Google scholar
[37]
Wang Z B, Hu M, Wu Z J, Yue D L. Research on the Formation Mechanisms of New Particles in the Atmosphere. Acta Chimica Sinica, 2013c, 71(04): 519–527
CrossRef Google scholar
[38]
Yue D L, Hu M, Wu Z J, Wang Z B, Guo S, Wehner B, Nowak A, Achtert P, Wiedensohler A, Jung J S, Kim Y J, Liu S C. Characteristics of aerosol size distributions and new particle formation in the summer in Beijing. Journal of Geophysical Research, D, Atmospheres, 2009, 114: D00G12
CrossRef Google scholar
[39]
Wang Z B, Hu M, Yue D L, Zheng J, Zhang R Y, Wiedensohler A, Wu Z J, Nieminen T, Boy M. Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case. Atmospheric Chemistry and Physics, 2011, 11(24): 12663–12671
CrossRef Google scholar
[40]
Wang Z B, Hu M, Pei X Y, Zhang R Y, Paasonen P, Zheng J, Yue D L, Wu Z J, Boy M, Wiedensohler A. Connection of organics to atmospheric new particle formation and growth at an urban site of Beijing. Atmospheric Environment, 2015, 103: 7–17
CrossRef Google scholar
[41]
Kulmala M, Dal Maso M, Mäkelä J M, Pirjola L, Väkevä M, Aalto P, Miikkulainen P, Hämeri K, O'Dowd C D. On the formation, growth and composition of nucleation mode particles. Tellus, 2001, 53B(4): 479–480
CrossRef Google scholar
[42]
Kulmala M, Petäjä T, Mönkkönen P, Koponen I K, Dal Maso M, Aalto P P, Lehtinen K E J, Kerminen V M. On the growth of nucleation mode particles: source rates of condensable vapor in polluted and clean environments. Atmospheric Chemistry and Physics, 2005, 5(2): 409–416
CrossRef Google scholar
[43]
Wang Z B, Hu M, Sun J Y, Wu Z J, Yue D L, Shen X J, Zhang Y M, Pei X Y, Cheng Y F, Wiedensohler A. Characteristics of regional new particle formation in urban and regional background environments in the North China Plain. Atmospheric Chemistry and Physics, 2013, 13(24): 12495–12506
CrossRef Google scholar
[44]
Wang Z B, Hu M, Yue D L, He L Y, Huang X F, Yang Q, Zheng J, Zhang R Y, Zhang Y H. New particle formation in the presence of a strong biomass burning episode at a downwind rural site in PRD, China. Tellus. Series B, Chemical and Physical Meteorology, 2013, 65(1): 97–112
CrossRef Google scholar
[45]
Ding A, Fu C, Yang X, Sun J, Zheng L, Xie Y, Herrmann E, Nie W, Petäjä T, Kerminen V M, Kulmala M. Ozone and fine particle in the western Yangtze river delta: an overview of 1 yr data at the SORPES station. Atmospheric Chemistry and Physics, 2013a, 13(11): 5813–5830
CrossRef Google scholar
[46]
Ding A J, Fu C B, Yang X Q, Sun J N, Petäjä T, Kerminen V M, Wang T, Xie Y N, Herrmann E, Zheng L F, Nie W, Wei L W, Kulmala M. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in the eastern China. Atmospheric Chemistry and Physics, 2013b, 13(20): 10545–10554
CrossRef Google scholar
[47]
Dupart Y, King S M, Nekat B, Nowak A, Wiedensohler A, Herrmann H, David G, Thomas B, Miffre A, Rairoux P, D’Anna B, George C. Mineral dust photochemistry induces nucleation events in the presence of SO2. Proceedings of the National Academy of Sciences, 2012,20842–20847
[48]
Kerminen V M, Pirjola L, Kulmala M. How significantly does coagulational scavenging limit atmospheric particle production? Journal of Geophysical Research, 2001, 106(D20): 24119–24126
CrossRef Google scholar
[49]
Lehtinen K E J, Dal Maso M, Kulmala M, Kerminen V M. Estimating nucleation rates from apparent particle formation rates and vice-versa: Revised formulation of the Kerminen-Kulmala equation. Journal of Aerosol Science, 2007, 38(9): 988–994
CrossRef Google scholar
[50]
Nie W, Ding A J, Xie Y N, Xu Z, Mao H, Kerminen V M, Zheng L F, Qi X M, Huang X, Yang X Q, Sun J N, Herrmann E, Petäjä T, Kulmala M, Fu C B. Influence of biomass burning plumes on HONO chemistry in eastern China. Atmospheric Chemistry and Physics, 2015, 15(3): 1147–1159
CrossRef Google scholar
[51]
He H, Wang Y, Ma Q, Ma J, Chu B, Ji D, Tang G, Liu C, Zhang H, Hao J. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports, 2014, 4: 4172
Pubmed
[52]
Vanhanen J, Mikkilä J, Lehtipalo K, Sipilä M, Manninen H E, Siivola E, Petäjä T, Kulmala M. Particle size magnifier for nano-CN Detection. Aerosol Science and Technology, 2011, 45(4): 533–542
CrossRef Google scholar
[53]
Kulmala M, Riipinen I, Sipilä M, Manninen H E, Petäjä T, Junninen H, Maso M D, Mordas G, Mirme A, Vana M, Hirsikko A, Laakso L, Harrison R M, Hanson I, Leung C, Lehtinen K E J, Kerminen V M. Toward direct measurement of atmospheric nucleation. Science, 2007, 318(5847): 89–92
CrossRef Pubmed Google scholar
[54]
Tammet H. Symmetric Inclined Grid Mobility Analyzer for the Measurement of Charged Clusters and Fine Nanoparticles in Atmospheric Air. Aerosol Science and Technology, 2011, 45(4): 468–479
CrossRef Google scholar
[55]
Gagné S, Nieminen T, Kurtén T, Manninen H E, Petäjä T, Laakso L, Kerminen V M, Boy M, Kulmala M. Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland. Atmospheric Chemistry and Physics, 2010, 10(8): 3743–3757
CrossRef Google scholar
[56]
Kulmala M, Riipinen I, Nieminen T, Hulkkonen M, Sogacheva L, Manninen H E, Paasonen P, Petäjä T, Dal Maso M, Aalto P P, Viljanen A, Usoskin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Härrak U, Plaß-Dülmer C. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmospheric Chemistry and Physics, 2010, 10(4): 1885–1898
CrossRef Google scholar
[57]
Junninen H, Ehn M, Petäjä T, Luosujärvi L, Kotiaho T, Kostiainen R, Rohner U, Gonin M, Fuhrer K, Kulmala M, Worsnop D R. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmospheric Measurement Techniques, 2010, 3(4): 1039–1053
CrossRef Google scholar
[58]
Jokinen T, Sipilä M, Junninen H, Ehn M, Lönn G, Hakala J, Petäjä T, Mauldin R L III, Kulmala M, Worsnop D R. Atmospheric sulfuric acid and neutral cluster measurements using CI-Api-TOF. Atmospheric Chemistry and Physics, 2012, 12(9): 4117–4125
CrossRef Google scholar
[59]
Petäjä T, Mauldin R L III, Kosciuch E, McGrath J, Nieminen T, Paasonen P, Boy M, Adamov A, Kotiaho T, Kulmala M. Sulfuric acid and OH concentrations in a boreal forest site. Atmospheric Chemistry and Physics, 2009, 9(19): 7435–7448
CrossRef Google scholar
[60]
Sipilä M, Berndt T, Petäjä T, Brus D, Vanhanen J, Stratmann F, Patokoski J, Mauldin R L 3rd, Hyvärinen A P, Lihavainen H, Kulmala M. The role of sulfuric acid in atmospheric nucleation. Science, 2010, 327(5970): 1243–1246
CrossRef Pubmed Google scholar
[61]
Kirkby J, Curtius J, Almeida J, Dunne E, Duplissy J, Ehrhart S, Franchin A, Gagné S, Ickes L, Kürten A, Kupc A, Metzger A, Riccobono F, Rondo L, Schobesberger S, Tsagkogeorgas G, Wimmer D, Amorim A, Bianchi F, Breitenlechner M, David A, Dommen J, Downard A, Ehn M, Flagan R C, Haider S, Hansel A, Hauser D, Jud W, Junninen H, Kreissl F, Kvashin A, Laaksonen A, Lehtipalo K, Lima J, Lovejoy E R, Makhmutov V, Mathot S, Mikkilä J, Minginette P, Mogo S, Nieminen T, Onnela A, Pereira P, Petäjä T, Schnitzhofer R, Seinfeld J H, Sipilä M, Stozhkov Y, Stratmann F, Tomé A, Vanhanen J, Viisanen Y, Vrtala A, Wagner P E, Walther H, Weingartner E, Wex H, Winkler P M, Carslaw K S, Worsnop D R, Baltensperger U, Kulmala M. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476(7361): 429–433
CrossRef Pubmed Google scholar
[62]
Almeida J, Schobesberger S, Kürten A, Ortega I K, Kupiainen-Määttä O, Praplan A P, Adamov A, Amorim A, Bianchi F, Breitenlechner M, David A, Dommen J, Donahue N M, Downard A, Dunne E, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Guida R, Hakala J, Hansel A, Heinritzi M, Henschel H, Jokinen T, Junninen H, Kajos M, Kangasluoma J, Keskinen H, Kupc A, Kurtén T, Kvashin A N, Laaksonen A, Lehtipalo K, Leiminger M, Leppä J, Loukonen V, Makhmutov V, Mathot S, McGrath M J, Nieminen T, Olenius T, Onnela A, Petäjä T, Riccobono F, Riipinen I, Rissanen M, Rondo L, Ruuskanen T, Santos F D, Sarnela N, Schallhart S, Schnitzhofer R, Seinfeld J H, Simon M, Sipilä M, Stozhkov Y, Stratmann F, Tomé A, Tröstl J, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Virtanen A, Vrtala A, Wagner P E, Weingartner E, Wex H, Williamson C, Wimmer D, Ye P, Yli-Juuti T, Carslaw K S, Kulmala M, Curtius J, Baltensperger U, Worsnop D R, Vehkamäki H, Kirkby J. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature, 2013, 502(7471): 359–363
CrossRef Pubmed Google scholar
[63]
Petäjä T, Sipilä M, Paasonen P, Nieminen T, Kurtén T, Ortega I K, Stratmann F, Vehkamäki H, Berndt T, Kulmala M. Experimental observation of strongly bound dimers of sulfuric acid: application to nucleation in the atmosphere. Physical Review Letters, 2011, 106(22): 228302
CrossRef Pubmed Google scholar
[64]
Ehn M, Thornton J A, Kleist E, Sipilä M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I H, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurtén T, Nielsen L B, Jørgensen S, Kjaergaard H G, Canagaratna M, Maso M D, Berndt T, Petäjä T, Wahner A, Kerminen V M, Kulmala M, Worsnop D R, Wildt J, Mentel T F. A large source of low-volatility secondary organic aerosol. Nature, 2014, 506(7489): 476–479
CrossRef Pubmed Google scholar
[65]
Riccobono F, Schobesberger S, Scott C E, Dommen J, Ortega I K, Rondo L, Almeida J, Amorim A, Bianchi F, Breitenlechner M, David A, Downard A, Dunne E M, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Hansel A, Junninen H, Kajos M, Keskinen H, Kupc A, Kürten A, Kvashin A N, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Nieminen T, Onnela A, Petäjä T, Praplan A P, Santos F D, Schallhart S, Seinfeld J H, Sipilä M, Spracklen D V, Stozhkov Y, Stratmann F, Tomé A, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Vrtala A, Wagner P E, Weingartner E, Wex H, Wimmer D, Carslaw K S, Curtius J, Donahue N M, Kirkby J, Kulmala M, Worsnop D R, Baltensperger U. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science, 2014, 344(6185): 717–721
CrossRef Pubmed Google scholar
[66]
Mauldin R L 3rd, Berndt T, Sipilä M, Paasonen P, Petäjä T, Kim S, Kurtén T, Stratmann F, Kerminen V M, Kulmala M. A new atmospherically relevant oxidant of sulphur dioxide. Nature, 2012, 488(7410): 193–196
CrossRef Pubmed Google scholar
[67]
Taipale R, Sarnela N, Rissanen M, Junninen H, Rantala P, Korhonen F, Siivola E, Berndt T, Kulmala M, Mauldin III R L, Petäjä T, Sipilä M.New instrument for measuring atmospheric concetrations of non-OH oxidants of SO2. Boreal Environment Research, 2014,19(B), 55–70
[68]
Mauldin R L III, Rissanen M P, Petäjä T, Kulmala M. Furthering information from OH and HO2+RO2 observations using a high resolution time of flight mass spectrometer. Atmospheric Measurement Techniques, 2016 doi:10.5194/amt-2015-398
[69]
Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fjäraa A M, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren J A, Swietlicki E, Williams P, Roldin P, Quincey P, Hüglin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Grüning C, Faloon K, Beddows D, Harrison R, Monahan C, Jennings S G, O’Dowd C D, Marinoni A, Horn H G, Keck L, Jiang J, Scheckman J, McMurry P H, Deng Z, Zhao C S, Moerman M, Henzing B, de Leeuw G, Löschau G, Bastian S. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques, 2012, 5(3): 657–685
CrossRef Google scholar
[70]
Hennessy S, Murphy P. The Potential for Collaborative Problem Solving in Design and Technology. International Journal of Technology and Design Education, 1999, 9(1): 1–36
CrossRef Google scholar
[71]
Nordic Climate Change Research 2009. NordForsk Policy Briefs 2009–8. Mandag Morgen, 2009
[72]
Hari P, Kulmala M.Station for Measuring Ecosystem – Atmosphere Relations (SMEAR II). Environmental Research, 2005, 10(5): 315–322
[73]
Lappalainen H K. Pan-Eurasian Experiment (PEEX): Towards holistic understanding of the feedbacks and interactions in the land- atmosphere- ocean- society continuum in the Northern Eurasian region. Atmospheric Chemistry and Physics- PEEX Special Issue, 2016
[74]
Lappalainen H K. Pan-Eurasian Experiment (PEEX): Towards holistic understanding of the feedbacks and interactions in the land- atmosphere- ocean- society continuum in the Northern Eurasian region. Atmospheric Physic and Chemistry Dissussions (in review)
[75]
Tang D, Wang C, Nie J, Chen R, Niu Q, Kan H, Chen B, Perera F. Health benefits of improving air quality in Taiyuan, China. Environment International, 2014, 73: 235–242
CrossRef Pubmed Google scholar
[76]
Haines A, McMichael A J, Smith K R, Roberts I, Woodcock J, Markandya A, Armstrong B G, Campbell-Lendrum D, Dangour A D, Davies M, Bruce N, Tonne C, Barrett M, Wilkinson P. Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers. Lancet, 2009, 374(9707): 2104–2114
CrossRef Pubmed Google scholar

Acknowledgements

The work in this manuscript is supported by Academy of Finland via Center of Excellence in Atmospheric Sciences (Project No. 272041) and the Finnish Funding Agency for Technology and Innovation TEKES via Beautiful Beijing project (No. 3667/31/2013) and European Research Council Advanced Grant (ATMNUCLE, 227463) and InGOS DEFROST and CRAICC (No. 26060) and Nordforsk CRAICC-PEEX (amendment to contact 26060) funded by Nordforsk. The SORPES station was supported by Nanjing University and the Collaborative Innovation Center of Climate Change in Jiangsu Province, China. Part of Aijun Ding’s work was supported by the excellent young scientist fund of National Natural Science Foundation of China (No. D0512/41422504).

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer–Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(755 KB)

Accesses

Citations

Detail

Sections
Recommended

/