Impact of photocatalytic remediation of pollutants on urban air quality

Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI

PDF(762 KB)
PDF(762 KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (5) : 2. DOI: 10.1007/s11783-016-0834-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Impact of photocatalytic remediation of pollutants on urban air quality

Author information +
History +

Abstract

Air pollution remediation using photocatalytic construction materials was tested.

NOx and VOC uptake rates on different materials were measured in the laboratory.

Effective NOx and VOC abatement levels were tested under real conditions.

Recommendations for implementation of photocatalytic materials are provided.

In the recent years, photocatalytic self-cleaning and “depolluting” materials have been suggested as a remediation technology mainly for NOx and aromatic VOCs in urban areas. A number of products incorporating the aforementioned technology have been made commercially available with the aim to improve urban air quality. These commercial products are based on the photocatalytic properties of a thin layer of TiO2 at the surface of the material (such as glass, pavement, etc.) or embedded in paints or concrete. The use of TiO2 photocatalysts as an emerging air pollution control technology has been reported in many locations worldwide. However, up to now, the effectiveness measured in situ and the expected positive impact on air quality of this relatively new technology has only been demonstrated in a limited manner. Assessing and demonstrating the effectiveness of these depolluting techniques in real scale applications aims to create a real added value, in terms of policy making (i.e., implementing air quality strategies) and economics (by providing a demonstration of the actual performance of a new technique).

Graphical abstract

Keywords

Photocatalysis / Air pollution / Depollution efficiency / NOx / VOC / Air quality abatement and management

Cite this article

Download citation ▾
Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality. Front. Environ. Sci. Eng., 2016, 10(5): 2 https://doi.org/10.1007/s11783-016-0834-1

References

[1]
EEA. Air quality in Europe — Report No 9/2013: ISSN 1725–9177 European Environment Agency, Luxembourg: Publications Office of the European Union, 2013
[2]
OECD. OECD Environmental Outlook to 2050: The Consequences of Inaction.Paris: OECD Publishing, 2012
CrossRef Google scholar
[3]
Dockery D W, Pope C A, Xu X, Spengler J D, Ware J H, Fay M E, Ferris B GJr, Speizer F E. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine, 1993, 329(24): 1753–1759
CrossRef Google scholar
[4]
Finlayson-Pitts B J, Pitts J N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications.San Diego: Academic Press, 2000
[5]
Melkonyan A, Kuttler W. Long-term analysis of NO, NO2 and O3 concentrations in North Rhine-Westphalia, Germany. Atmospheric Environment, 2012, 60: 316–326
CrossRef Google scholar
[6]
Carslaw D C, Beevers S D, Bell M C. Risks of exceeding the hourly EU limit value for nitrogen dioxide resulting from increased road transport emissions of primary nitrogen dioxide. Atmospheric Environment, 2007, 41(10): 2073–2082
CrossRef Google scholar
[7]
Kurtenbach R, Kleffmann J, Niedojadlo A, Wiesen P. Primary NO2 emissions and their impact on air quality in traffic environments in Germany. Environmental Sciences Europe, 2012, 24(1): 1–8
CrossRef Google scholar
[8]
Beevers S D, Westmoreland E, de Jong M C, Williams M L, Carslaw D C. Trends in NOx and NO2 emissions from road traffic in Great Britain. Atmospheric Environment, 2012, 54: 107–116
CrossRef Google scholar
[9]
Kurz C, Orthofer R, Sturm P, Kaiser A, Uhrner U, Reifeltshammer R, Rexeis M. Projection of the air quality in Vienna between 2005 and 2020 for NO2 and PM10. Urban Climate, 2014, 10, Part 4(0): 703–719
[10]
Maggos T, Plassais A, Bartzis J G, Vasilakos C, Moussiopoulos N, Bonafous L. Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environmental Monitoring and Assessment, 2008, 136(1–3): 35–44
[11]
Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 2014, 114(19): 9919–9986
CrossRef Google scholar
[12]
Strini A, Cassese S, Schiavi L. Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B: Environmental, 2005, 61(1–2): 90–97
CrossRef Google scholar
[13]
Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews (Washington, D. C.), 1995, 95(1): 69–96
CrossRef Google scholar
[14]
Herrmann J M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999, 53(1): 115–129
CrossRef Google scholar
[15]
Chen H, Nanayakkara C E, Grassian V H. Titanium dioxide photocatalysis in atmospheric chemistry. Chemical Reviews, 2012, 112(11): 5919–5948
CrossRef Google scholar
[16]
Goodeve C F, Kitchener J A. Photosensitisation by titanium dioxide. Transactions of the Faraday Society, 1938, 34(0): 570–579
CrossRef Google scholar
[17]
Renz C. Lichtreaktionen der Oxyde des Titans, Cers und der Erdsäuren. Helvetica ChimicaActa, 1921, 4(1): 961–968 (in German)
CrossRef Google scholar
[18]
Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63(12): 515–582
CrossRef Google scholar
[19]
Henderson M A. A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 2011, 66(6–7): 185–297
CrossRef Google scholar
[20]
Auvinen J, Wirtanen L. The influence of photocatalytic interior paints on indoor air quality. Atmospheric Environment, 2008, 42(18): 4101–4112
CrossRef Google scholar
[21]
Beaumont S K, Gustafsson R J, Lambert R M. Heterogeneous photochemistry relevant to the troposphere: H2O2 production during the photochemical reduction of NO2 to HONO on UV-illuminated TiO2 surfaces. ChemPhysChem, 2009, 10(2): 331–333
CrossRef Google scholar
[22]
Geiss O, Cacho C, Barrero-Moreno J, Kotzias D. Photocatalytic degradation of organic paint constituents-formation of carbonyls. Building and Environment, 2012, ( 48): 107–112
CrossRef Google scholar
[23]
Gustafsson R J, Orlov A, Griffiths P T, Cox R A, Lambert R M. Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry. Chemical Communications (Cambridge), 2006, (37): 3936–3938
CrossRef Google scholar
[24]
Monge M E, D'Anna B, George C. Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces-an air quality remediation process? Physical Chemistry Chemical Physics, 2010, 12(31): 8991–8999
CrossRef Google scholar
[25]
Ndour M, D'Anna B, George C, Ka O, Balkanski Y, Kleffmann J, Stemmler K, Ammann M. Photoenhanced uptake of NO2 on mineral dust: laboratory experiments and model simulations. Geophysical Research Letters, 2008, 35(5): L05812, 1–5
CrossRef Google scholar
[26]
Salthammer T, Fuhrmann F. Photocatalytic surface reactions on indoor wall paint. Environmental Science & Technology, 2007, 41(18): 6573–6578
CrossRef Google scholar
[27]
Boonen E, Akylas V, Barmpas F, Boréave A, Bottalico L, Cazaunau M, Chen H, Daële V, De Marco T, Doussin J F, Gaimoz C, Gallus M, George C, Grand N, Grosselin B, Guerrini G L, Herrmann H, Ifang S, Kleffmann J, Kurtenbach R, Maille M, Manganelli G, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Beeldens A. Construction of a photocatalytic de-polluting field site in the Leopold II tunnel in Brussels. Journal of Environmental Management, 2015, 155(0): 136–144
CrossRef Google scholar
[28]
Gallus M, Akylas V, Barmpas F, Beeldens A, Boonen E, Boreave A, Cazaunau M, Chen H, Daele V, Doussin J F, Dupart Y, Gaimoz C, George C, Grosselin B, Herrmann H, Ifang S, Kurtenbach R, Maille M, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Kleffmann J. Photocatalytic de-pollution in the Leopold II tunnel in Brussels: NOx abatement results. Building and Environment, 2015, (84): 125–133
CrossRef Google scholar
[29]
Crowley J N, Ammann M, Cox R A, Hynes R G, Jenkin M E, Mellouki A, Rossi M J, Troe J, Wallington T J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V—heterogeneous reactions on solid substrates. Atmospheric Chemistry and Physics, 2010, 10(18): 9059–9223
CrossRef Google scholar
[30]
Ammann M, Cox R A, Crowley J N, Jenkin M E, Mellouki A, Rossi M J, Troe J, Wallington T J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI—heterogeneous reactions with liquid substrates. Atmospheric Chemistry and Physics, 2013, 13(16): 8045–8228
CrossRef Google scholar
[31]
Ammann M, Pöschl U, Rudich Y. Effects of reversible adsorption and Langmuir-Hinshelwood surface reactions on gas uptake by atmospheric particles. Physical Chemistry Chemical Physics, 2003, 5(2): 351–356
CrossRef Google scholar
[32]
Hashimoto K, Wasada K, Toukai N, Kominami H, Kera Y. Photocatalytic oxidation of nitrogen monoxide over titanium(IV) oxide nanocrystals large size areas. Journal of Photochemistry and Photobiology A Chemistry, 2000, 136(1–2): 103–109
CrossRef Google scholar
[33]
Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96
CrossRef Google scholar
[34]
Shang J, Du Y, Xu Z. Photocatalytic oxidation of heptane in the gas-phase over TiO2. Chemosphere, 2002, 46(1): 93–99
CrossRef Google scholar
[35]
Rohrer F, Bohn B, Brauers T, Brüning D, Johnen J F, Wahner A, Kleffmann J. Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics Discussion, 2004, 4(6): 7881–7915
CrossRef Google scholar
[36]
Gallus M, Ciuraru R, Mothes F, Akylas V, Barmpas F, Beeldens A, Bernard F, Boonen E, Boréave A, Cazaunau M, Charbonnel N, Chen H, Daële V, Dupart Y, Gaimoz C, Grosselin B, Herrmann H, Ifang S, Kurtenbach R, Maille M, Marjanovic I, Michoud V, Mellouki A, Miet K, Moussiopoulos N, Poulain L, Zapf P, George C, Doussin J F, Kleffmann J. Photocatalytic abatement results from a model street canyon. Environmental Science and Pollution Research International, 2015, 22(22):18185–18196
CrossRef Google scholar
[37]
Ballari M M, Brouwers H J H. Full scale demonstration of air-purifying pavement. Journal of Hazardous Materials, 2013, 254–255: 406–414
CrossRef Google scholar
[38]
Bolte G, Flassak T.Numerische Simulation der Wirksamkeit photo katalytis chaktiver Betonoberflächen. In: Conference Proceedings of Internationale Baustofftagung 18. Ibausil, Weimar.Weimar: Internationale Baustofftagung 18. ibausil, 2012
[39]
Guerrini G L, Peccati E. Photocatalytic cementitious roads for depollution. In: Proceedings of International RILEM Symposium on Photocatalysis, Environment and Construction Materials, Florence, Italy. Bagneux: RILEM Publications, 2007
[40]
Ifang S, Gallus M, Liedtke S, Kurtenbach R, Wiesen P, Kleffmann J. Standardization methods for testing photo-catalytic air remediation materials: problems and solution. Atmospheric Environment, 2014, (91): 154–161
CrossRef Google scholar

Acknowledgements

The authors gratefully acknowledge the financial support of the European Commission through the Life+ grant (LIFE 08 ENV/F/000487 PHOTOPAQ).
Funding
 

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(762 KB)

Accesses

Citations

Detail

Sections
Recommended

/