Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion

Xiuning HUA, Wei WANG, Feng WANG

PDF(1040 KB)
PDF(1040 KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 1130-1138. DOI: 10.1007/s11783-015-0821-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion

Author information +
History +

Abstract

Chemical looping combustion is a promising technology for energy conversion due to its low-carbon, high-efficiency, and environmental-friendly feature. A vital issue for CLC process is the development of oxygen carrier, since it must have sufficient reactivity. The mechanism and kinetics of CO reduction on iron-based oxygen carriers namely pure Fe2O3 and Fe2O3 supported by alumina (Fe2O3/Al2O3) were investigated using thermo-gravimetric analysis. Fe2O3/Al2O3 showed better reactivity over bare Fe2O3 toward CO reduction. This was well supported by the observed higher rate constant for Fe2O3/Al2O3 over pure Fe2O3 with respective activation energy of 41.1±2.0 and 33.3±0.8 kJ·mol−1. The proposed models were compared via statistical approach comprising Akaike information criterion with correction coupled with F-test. The phase-boundary reaction and diffusion control models approximated to 95% confidence level along with scanning electron microscopy results; revealed the promising reduction reactions of pure Fe2O3 and Fe2O3/Al2O3. The boosting recital of iron-based oxygen carrier support toward efficient chemical looping combustion could be explained accurately through the present study.

Keywords

chemical looping combustion / iron-based oxygen carriers / reduction kinetics / carbon monoxide / statistics

Cite this article

Download citation ▾
Xiuning HUA, Wei WANG, Feng WANG. Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion. Front. Environ. Sci. Eng., 2015, 9(6): 1130‒1138 https://doi.org/10.1007/s11783-015-0821-y

References

[1]
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013
[2]
Cabello A, Abad A, García-Labiano F, Gayán P, de Diego L F, Adánez J. Kinetic determination of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for use in gas-fueled Chemical Looping Combustion. Chemical Engineering Journal, 2014, 258(0): 265–280
CrossRef Google scholar
[2a]
Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G. Activated carbons and amine-modified materials for carbon dioxide capture—a review. Frontiers of Environmental Science & Engineering, 2013, 7(3): 326–340
[3]
IPCC. Carbon Dioxide Capture and Storage. Working group III of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2005
[3a]
Xie J, Yan N, Liu F, Qu Z, Yang S, Liu P. CO2 adsorption performance of ZIF-7 and its endurance in flue gas components. Frontiers of Environmental Science & Engineering, 2014, 8(2): 162–168
[4]
Lewis W K. Newton, Gilliland E R Production of pure carbon dioxide. US Patent 2665972 A, 1954
[5]
Richter H J, Knoche K F. Reversibility of combustion processes. ACS Symposium Series, 1983, 235(1): 71–86
[6]
Ishida M, Jin H. A new advanced power-generation system using chemical-looping combustion. Energy, 1994, 19(4): 415–422
CrossRef Google scholar
[7]
Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chemical Engineering Science, 2001, 56(10): 3101–3113
CrossRef Google scholar
[8]
Ishida M, Jin H. A novel chemical-looping combustor without NOx formation. Industrial & Engineering Chemistry Research, 1996, 35(7): 2469–2472
CrossRef Google scholar
[9]
Hua X, Wang W. Chemical looping combustion: a new low-dioxin energy conversion technology. Journal of Environmental Sciences- China, 2015, 32(0): 135–145
CrossRef Google scholar
[10]
Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego L F. Progress in chemical-looping combustion and reforming technologies. Progress in Energy and Combustion Science, 2012, 38(2): 215–282
CrossRef Google scholar
[11]
Hua X, Wang W, Hu Y, Zhu J. Analysis of reduction stage of chemical looping packed bed reactor based on the reaction front distribution. Journal of Material Cycles and Waste Management, 2014, 16(4): 583–590
CrossRef Google scholar
[12]
Lyngfelt A, Johansson M, Mattisson T. Chemical-looping combustion- status of development. In: 9th International Conference on Circulating Fluidized Beds, Hamburg. Chalmers Publication Library: Goteborg, 2008
[13]
Abad A, Mattisson T, Lyngfelt A, Johansson M. The use of iron oxide as oxygen carrier in a chemical-looping reactor. Fuel, 2007, 86(7−8): 1021–1035
CrossRef Google scholar
[14]
Huang Z, He F, Feng Y, Zhao K, Zheng A, Chang S, Li H. Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier. Bioresource Technology, 2013, 140(0): 138–145
CrossRef Google scholar
[15]
Mattisson T, García-Labiano F, Kronberger B, Lyngfelt A, Adánez J, Hofbauer H. Chemical-looping combustion using syngas as fuel. International Journal of Greenhouse Gas Control, 2007, 1(2): 158–169
CrossRef Google scholar
[16]
Li F, Zeng L, Velazquez-Vargas L G, Yoscovits Z, Fan L S. Syngas chemical looping gasification process: Bench-scale studies and reactor simulations. AIChE Journal. American Institute of Chemical Engineers, 2010, 56(8): 2186–2199
CrossRef Google scholar
[17]
Burnham K P, Anderson D R. Model Selection and Multimodel Inference: A Practical Information—Theoretic Approach. New York: Springer, 2002
[18]
Ott R L, Longnecker M T. An Introduction to Statistical Methods and Data Analysis. Canada: Cengage Learning, 2010
[19]
de Diego L F, García-Labiano F, Adánez J, Gayán P, Abad A, Corbella B M, María Palacios J. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel, 2004, 83(13): 1749–1757
CrossRef Google scholar
[20]
Gayán P, Adánez-Rubio I, Abad A, de Diego L F, García-Labiano F, Adánez J. Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Fuel, 2012, 96(0): 226–238
CrossRef Google scholar
[21]
Tong A, Sridhar D, Sun Z, Kim H R, Zeng L, Wang F, Wang D, Kathe M V, Luo S, Sun Y, Fan L S. Continuous high purity hydrogen generation from a syngas chemical looping 25kWth sub-pilot unit with 100% carbon capture. Fuel, 2013, 103(0): 495–505
CrossRef Google scholar
[22]
Liu F, Zhang Y, Chen L, Qian D, Neathery J K, Kozo S, Liu K. Investigation of a canadian ilmenite as an oxygen carrier for chemical looping combustion. Energy & Fuels, 2013, 27(10): 5987–5995
CrossRef Google scholar
[23]
Monazam E R, Breault R W, Siriwardane R, Miller D D. Thermogravimetric analysis of modified hematite by methane (CH4) for chemical-looping combustion: a global kinetics mechanism. Industrial & Engineering Chemistry Research, 2013, 52(42): 14808–14816
CrossRef Google scholar
[24]
Monazam E R, Breault R W, Siriwardane R. Kinetics of hematite to Wüstite by hydrogen for chemical looping combustion. Energy & Fuels, 2014, 28(8): 5406–5414
CrossRef Google scholar
[25]
Monazam E R, Breault R W, Siriwardane R, Richards G, Carpenter S. Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: a global mechanism. Chemical Engineering Journal, 2013, 232(0): 478–487
CrossRef Google scholar
[26]
Cho P, Mattisson T, Lyngfelt A. Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion. Industrial & Engineering Chemistry Research, 2005, 44(4): 668–676
CrossRef Google scholar
[27]
Monazam E R, Breault R W, Siriwardane R. Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion. Chemical Engineering Journal, 2014, 242(0): 204–210
CrossRef Google scholar
[28]
Khawam A, Flanagan D R. Solid-state kinetic models: basics and mathematical fundamentals. Journal of Physical Chemistry B, 2006, 110(35): 17315–17328
CrossRef Google scholar
[29]
Luo M, Wang S, Wang L, Lv M. Reduction kinetics of iron-based oxygen carriers using methane for chemical-looping combustion. Journal of Power Sources, 2014, 270(0): 434–440
CrossRef Google scholar
[30]
SahaB, KhanA, IbrahimH, IdemR. Evaluating the performance of non-precious metal based catalysts for sulfur-tolerance during the dry reforming of biogas. Fuel, 2014, 120(0): 202–217
CrossRef Google scholar

Acknowledgements

This work was supported by the National Key Technology R&D Program of China (Grant No. 2010BAC66B03), the National Natural Science Foundation of China (Grant No. 21477061), and the National Basic Research Program of China (Grant No. 2011CB201502). The authors also wish to express thanks to Beijing Engineering Research Center of Biogas Centralized Utilization (Tsinghua University) for support of the experiment unit construction.
Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11783-015-0821-y and is accessible for authorized users.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1040 KB)

Accesses

Citations

Detail

Sections
Recommended

/