Microprofiles of activated sludge aggregates using microelectrodes in completely autotrophic nitrogen removal over nitrite (CANON) reactor

Yongtao LV , Xuan CHEN , Lei WANG , Kai JU , Xiaoqiang CHEN , Rui MIAO , Xudong WANG

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 390 -398.

PDF (989KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 390 -398. DOI: 10.1007/s11783-015-0818-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Microprofiles of activated sludge aggregates using microelectrodes in completely autotrophic nitrogen removal over nitrite (CANON) reactor

Author information +
History +
PDF (989KB)

Abstract

Microsensor measurements and fluorescence in situ hybridization (FISH) analysis were combined to investigate the microbial populations and activities in a laboratory-scale sequencing batch reactor (SBR) for completely autotrophic nitrogen removal over nitrite (CANON). Fed with synthetic wastewater rich in ammonia, the SBR removed 82.5±5.4% of influent nitrogen and a maximum nitrogen-removal rate of 0.52 kgN·m−3·d−1 was achieved. The FISH analysis revealed that aerobic ammonium-oxidizing bacteria (AerAOB) Nitrosomonas and anaerobic ammonium-oxidizing bacteria (AnAOB) dominated the community. To quantify the microbial activities inside the sludge aggregates, microprofiles were measured using pH, dissolved oxygen (DO), NH4+, NO2 and NO3 microelectrodes. In the outer layer of sludge aggregates (0–700 μm), nitrite-oxidizing bacteria (NOB) showed high activity with 4.1 μmol·cm−3·h−1 of maximum nitrate production rate under the condition of DO concentration higher than 3.3 mg·L−1. Maximum AerAOB activity was detected in the middle layer (depths around 1700 μm) where DO concentration was 1.1 mg·L−1. In the inner layer (2200–3500 μm), where DO concentration was below 0.9 mg·L−1, AnAOB activity was detected. We thus showed that information obtained from microscopic views can be helpful in optimizing the SBR performance.

Keywords

aerobic ammonium-oxidizing bacteria / anaerobic ammonium-oxidizing bacteria / nitrite-oxidizing bacteria / microelectrodes / CANON

Cite this article

Download citation ▾
Yongtao LV, Xuan CHEN, Lei WANG, Kai JU, Xiaoqiang CHEN, Rui MIAO, Xudong WANG. Microprofiles of activated sludge aggregates using microelectrodes in completely autotrophic nitrogen removal over nitrite (CANON) reactor. Front. Environ. Sci. Eng., 2016, 10(2): 390-398 DOI:10.1007/s11783-015-0818-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Malik O AHsu AJohnson L Ade Sherbinin A. A global indicator of wastewater treatment to inform the Sustainable Development Goals (SDGs). Environmental Science & Policy201548: 172–185

[2]

Hendrickx T L GWang YKampman CZeeman GTemmink HBuisman C J N. Autotrophic nitrogen removal from low strength waste water at low temperature. Water Research201246(7): 2187–2193

[3]

Desmidt EMonballiu ADe Clippeleir HVerstraete WMeesschaert B D. Autotrophic nitrogen removal after ureolytic phosphate precipitation to remove both endogenous and exogenous nitrogen. Water Science and Technology201367(7): 1425–1433

[4]

Jetten M SStrous Mvan de Pas-Schoonen K TSchalk Jvan Dongen U Gvan de Graaf A ALogemann SMuyzer Gvan Loosdrecht M CKuenen J G. The anaerobic oxidation of ammonium. FEMS Microbiology Reviews199822(5): 421–437

[5]

Liang YLi DZhang XZeng HYang ZCui SZhang J. Stability and nitrite-oxidizing bacteria community structure in different high-rate CANON reactors. Bioresource Technology2014175C: 189–194

[6]

Kumar MLin J G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal—Strategies and issues. Journal of Hazardous Materials2010178(1−3): 1–9

[7]

Third K ASliekers A OKuenen J GJetten M S M. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Systematic and Applied Microbiology200124(4): 588–596

[8]

Cho SFujii NLee TOkabe S. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor. Bioresource Technology2011102(2): 652–659

[9]

Zhang XLi DLiang YZhang YFan DZhang J. Application of membrane bioreactor for completely autotrophic nitrogen removal over nitrite (CANON) process. Chemosphere201393(11): 2832–2838

[10]

Wang LZheng PXing YLi WYang JAbbas GLiu SHe ZZhang JZhang HLu H. Effect of particle size on the performance of autotrophic nitrogen removal in the granular sludge bed reactor and microbiological mechanisms. Bioresource Technology2014157: 240–246

[11]

Vázquez-Padín JMosquera-Corral ACampos J LMéndez RRevsbech N P. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor. Water Research201044(15): 4359–4370

[12]

Kwak WMcCarty P LBae JHuang Y TLee P H. Efficient single-stage autotrophic nitrogen removal with dilute wastewater through oxygen supply control. Bioresource Technology2012123: 400–405

[13]

Chang XLi DLiang YYang ZCui SLiu TZeng HZhang J. Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature. Journal of Environmental Sciences (China)201325(4): 688–697

[14]

Qiao STian TDuan XZhou JCheng Y. Novel single-stage autotrophic nitrogen removal via co-immobilizing partial nitrifying and anammox biomass. Chemical Engineering Journal2013230: 19–26

[15]

Xiao YWu SYang Z HWang Z JYan C ZZhao F. In situ probing the effect of potentials on the microenvironment of heterotrophic denitrification biofilm with microelectrodes. Chemosphere201393(7): 1295–1300

[16]

Li BBishop P L. Micro-profiles of activated sludge floc determined using microelectrodes. Water Research200438(5): 1248–1258

[17]

Lv YWang LSun TWang XYang YWang Z. Autotrophic nitrogen removal discovered in suspended nitritation system. Chemosphere201079(2): 180–185

[18]

American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed. American Water Works Association and Water Pollution Control Federation, Washington DC, USA2005

[19]

Schmid MSchmitz-Esser SJetten MWagner M. 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environmental Microbiology20013(7): 450–459

[20]

Vilajeliu-Pons APuig SPous NSalcedo-Dávila IBañeras LBalaguer M DColprim J. Microbiome characterization of MFCs used for the treatment of swine manure. Journal of Hazardous Materials2015288: 60–68

[21]

Daims HNielsen J LNielsen P HSchleifer K HWagner M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Applied and Environmental Microbiology200167(11): 5273–5284

[22]

Rongsayamanont CLimpiyakorn TKhan E. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors. Bioresource Technology2014164: 254–263

[23]

Figueroa MVázquez-Padín J RMosquera-Corral ACampos J LMéndez R. Is the CANON reactor an alternative for nitrogen removal from pre-treated swine slurry? Biochemical Engineering Journal201265(15): 23–29

[24]

Wang LLv YWang XYang YBai X. Micro-analysis of nitrogen transport and conversion inside activated sludge flocs using microelectrodes. Frontiers of Environmental Science & Engineering in China20115(4): 633–638

[25]

De Beer DSchramm ASantegoeds C MKühl M. A nitrite microsensor for profiling environmental biofilms. Applied and Environmental Microbiology199763(3): 973–977

[26]

Ploug HJorgensen B B. A net-jet flow system for mass transfer and microsensor studies of sinking aggregates. Marine Ecology Progress Series1999176: 279–290

[27]

Okabe SOshiki MTakahashi YSatoh H. N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules. Water Research201145(19): 6461–6470

[28]

Keluskar RNerurkar ADesai A. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry. Bioresource Technology2013130: 390–397

[29]

Daverey AHung N TDutta KLin J G. Ambient temperature SNAD process treating anaerobic digester liquor of swine wastewater. Bioresource Technology2013141: 191–198

[30]

Liang YLi DZhang XZeng HYang ZZhang J. Microbial characteristics and nitrogen removal of simultaneous partial nitrification, anammox and denitrification (SNAD) process treating low C/N ratio sewage. Bioresource Technology2014169: 103–109

[31]

Wang LZheng PChen TChen JXing YJi QZhang MZhang J. Performance of autotrophic nitrogen removal in the granular sludge bed reactor. Bioresource Technology2012123: 78–85

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (989KB)

2331

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/