Multiphase redistribution differences of polycyclic aromatic hydrocarbons (PAHs) between two successive sediment suspensions

Rufeng LI , Chenghong FENG , Dongxin WANG , Baohua LI , Zhenyao SHEN

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 381 -389.

PDF (493KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 381 -389. DOI: 10.1007/s11783-015-0817-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Multiphase redistribution differences of polycyclic aromatic hydrocarbons (PAHs) between two successive sediment suspensions

Author information +
History +
PDF (493KB)

Abstract

Successive sediment suspensions often happen in estuary, yet little research has probed into the difference in the release behaviors of organic compounds among different suspensions. This study took polycyclic aromatic hydrocarbons (PAHs) as typical organic contaminants and investigated the release behaviors between two successive suspensions with a particle entrainment simulator (PES). Results showed that successive sediment suspensions lowered the concentration of dissolved PAHs in the overlying water via facilitating the re-adsorption of dissolved PAHs onto the suspended particles. Fast-release and slow-release periods of PAHs were successively observed in the both suspensions. The concentration changes of dissolved PAHs in the second suspension were generally similar with but hysteretic to those in the first suspension. More vigorous desorption and re-absorption of PAHs were induced in the second suspension. Successive sediment suspensions obviously decreased the concentrations of mineral composition and organic matters in the overlying water, which significantly affects multiphase distribution of PAHs.

Keywords

sediment suspension / PAHs / multiphase distribution / distribution coefficients

Cite this article

Download citation ▾
Rufeng LI, Chenghong FENG, Dongxin WANG, Baohua LI, Zhenyao SHEN. Multiphase redistribution differences of polycyclic aromatic hydrocarbons (PAHs) between two successive sediment suspensions. Front. Environ. Sci. Eng., 2016, 10(2): 381-389 DOI:10.1007/s11783-015-0817-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li BFeng CLi XChen YNiu JShen Z. Spatial distribution and source apportionment of PAHs in surficial sediments of the Yangtze Estuary, China. Marine Pollution Bulletin201264(3): 636–643

[2]

Khairy M ALohmann R. Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere201391(7): 895–903

[3]

Doong R ALin Y T. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Research200438(7): 1733–1744

[4]

Sanford L P. Wave-forced resuspension of upper Chesapeake Bay muds. Estuarine Research Federation199417(1B): 148–165

[5]

Wang H SCheng ZLiang PShao D DKang YWu S CWong C KWong M H. Characterization of PAHs in surface sediments of aquaculture farms around the Pearl River Delta. Ecotoxicology and Environmental Safety201073(5): 900–906

[6]

Eggleton JThomas K V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International200430(7): 973–980

[7]

Patrolecco LAdemollo NCapri SPagnotta RPolesello S. Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy). Chemosphere201081(11): 1386–1392

[8]

Brunk B KJirka G HLion L W. Effects of salinity changes and the formation of dissolved organic matter coatings on the sorption of phenanthrene: Implications for pollutant trapping in estuaries. Environmental Science & Technology199631(1): 119–125

[9]

Wiberg P LHarris C K. Desorption of pp’-DDE from sediment during resuspension events on the Palos Verdes shelf, California: a modeling approach. Continental Shelf Research200222(6−7): 1005–1023

[10]

Calmano WHong JForstner U. Binding and mobilisation of heavy metals in contaminated sediments affected by pH and redox potential. Water Science and Technology199328(8−9): 223–235

[11]

Schneider A R. PCB desorption from resuspended Hudson River sediment. Dissertation for the Doctoral Degree. Maryland: University of Maryland, 2005

[12]

Wang L LYang Z F. Simulation of polycyclic aromatic hydrocarbon remobilization in typical active regions of river system under hydrodynamic conditions. Journal of Soils and Sediments201010(7): 1380–1387

[13]

Latimer J SDavis W RKeith D J. Mobilization of PAHs and PCBs from in-place contaminated marine sediments during simulated resuspension events. Estuarine, Coastal and Shelf Science199949(4): 577–595

[14]

Feng JYang ZNiu JShen Z. Remobilization of polycyclic aromatic hydrocarbons during the resuspension of Yangtze River sediments using a particle entrainment simulator. Environmental Pollution2007149(2): 193–200

[15]

Zhou J LHong HZhang ZMaskaoui KChen W. Multi-phase distribution of organic micropollutants in Xiamen Harbour, China. Water Research200034(7): 2132–2150

[16]

Gratz L DBagley S TLeddy D GJohnson J HChiu CStommel P. Interlaboratory comparison of HPLC-fluorescence detection and GC/MS: analysis of PAH compounds present in diesel exhaust. Journal of Hazardous Materials200074(1−2): 37–46

[17]

Capelo J LGalesio M MFelisberto G MVaz CPessoa J C. Micro-focused ultrasonic solid-liquid extraction ( μ<?Pub Caret?>FUSLE) combined with HPLC and fluorescence detection for PAHs determination in sediments: optimization and linking with the analytical minimalism concept. Talanta200566(5): 1272–1280

[18]

Wang DFeng CHuang LNiu JShen Z. Historical deposition behaviors of PAHs in the Yangtze River Estuary: role of the sources and water currents. Chemosphere201390(6): 2020–2026

[19]

Tsai CLick W. A portable device for measuring sediment resuspension. Journal of Great Lakes Research198612(4): 314–321

[20]

Komada TReimers C E. Resuspension-induced partitioning of organic carbon between solid and solution phases from a river-ocean transition. Marine Chemistry2001763(3): 155–174

[21]

Portet-Koltalo FAmmami M TBenamar AWang HLe Derf FDuclairoir-Poc C. Investigation of the release of PAHs from artificially contaminated sediments using cyclolipopeptidic biosurfactants. Journal of Hazardous Materials2013261: 593–601

[22]

Ghosh UTalley J WLuthy R G. Particle-scale investigation of PAH desorption kinetics and thermodynamics from sediment. Environmental Science & Technology200135(17): 3468–3475

[23]

Hung C CGong G CKo F CChen H YHsu M LWu J MPeng S CNan F HYeager K MSantschi P H. Relationships between persistent organic pollutants and carbonaceous materials in aquatic sediments of Taiwan. Marine Pollution Bulletin201060(7): 1010–1017

[24]

Wang LShen ZWang HNiu JLian GYang Z. Distribution characteristics of phenanthrene in the water, suspended particles and sediments from Yangtze River under hydrodynamic conditions. Journal of Hazardous Materials2009165(1−3): 441–446

[25]

Doll T EFrimmel F HKumke M UOhlenbusch G. Interaction between natural organic matter (NOM) and polycyclic aromatic compounds (PAC)-comparison of fluorescence quenching and solid phase micro extraction (SPME). Fresenius' Journal of Analytical Chemistry1999364(4): 313–319

[26]

Shor L MRockne K JTaghon G LYoung L YKosson D S. Desorption kinetics for field-aged polycyclic aromatic hydrocarbons from sediments. Environmental Science & Technology200337(8): 1535–1544

[27]

Ciutat AWiddows JReadman J W. Influence of cockle Cerastoderma edule bioturbation and tidal-current cycles on resuspension of sediment and polycyclic aromatic hydrocarbons. Marine Ecology Progress Series2006328: 51–64

[28]

Chiou C TMcGroddy S EKile D E. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environmental Science & Technology199832(2): 264–269

[29]

Rockne K JTaghon G LKosson D S. Pore structure of soot deposits from several combustion sources. Chemosphere200041(8): 1125–1135

[30]

Schrap S MHaller MOpperhuizen A. Investigating the influence of incomplete separation of sediment and water on experimental sorption coefficients of chlorinated benzenes. Environmental Toxicology and Chemistry199514(2): 219–228

[31]

Servos M RMuir D C. Effect of suspended sediment concentration on the sediment to water partition coefficient for 1,3,6,8-tetrachlorodibenzo-p-dioxin. Environmental Science & Technology198923(10): 1302–1306

[32]

Baker J ECapel P DEisenreich S J. Influence of colloids on sediment-water partition coefficients of polychlorobiphenyl congeners in natural waters. Environmental Science & Technology198620(10): 1136–1143

[33]

Neff J MStout S AGunster D G. Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integrated Environmental Assessment and Management20051(1): 22–33

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (493KB)

2045

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/