Catalytic activities and mechanism of formaldehyde oxidation over gold supported on MnO2 microsphere catalysts at room temperature

Guanglong PANG , Donghui WANG , Yunhong ZHANG , Chunyan MA , Zhengping HAO

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (3) : 447 -457.

PDF (1145KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (3) : 447 -457. DOI: 10.1007/s11783-015-0808-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Catalytic activities and mechanism of formaldehyde oxidation over gold supported on MnO2 microsphere catalysts at room temperature

Author information +
History +
PDF (1145KB)

Abstract

MnO2 microspheres with various surface structures were prepared using the hydrothermal method, and Au/MnO2 catalysts were synthesized using the sol-gel method. We obtained three MnO2 microspheres and Au/MnO2 samples: coherent solid spheres covered with wire-like nanostructures, solid spheres with nanosheets, and hierarchical hollow microspheres with nanoplatelets and nanorods. We investigated the properties and catalytic activities of formaldehyde oxidation at room temperature. Crystalline structures of MnO2 are the main factor affecting the catalytic activities of these samples, and γ-MnO2 shows high catalytic performance. The excellent redox properties are responsible for the catalytic ability of γ-MnO2. The gold-supported interaction can change the redox properties of catalysts and accelerate surface oxygen species transition, which can account for the catalytic activity enhancement of Au/MnO2. We also studied intermediate species. The dioxymethylene (DOM) and formate species formed on the catalyst surface were considered intermediates, and were ultimately transformed into hydrocarbonate and carbonate and then decomposed into CO2. A proposed mechanism of formaldehyde oxidation over Au/MnO2 catalysts was also obtained.

Keywords

MnO2 microspheres / Au/MnO2 / formaldehyde oxidation / γ-MnO2

Cite this article

Download citation ▾
Guanglong PANG, Donghui WANG, Yunhong ZHANG, Chunyan MA, Zhengping HAO. Catalytic activities and mechanism of formaldehyde oxidation over gold supported on MnO2 microsphere catalysts at room temperature. Front. Environ. Sci. Eng., 2016, 10(3): 447-457 DOI:10.1007/s11783-015-0808-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Salthammer T, Mentese S, Marutzky R. Formaldehyde in the indoor environment. Chemical Reviews, 2010, 110(4): 2536–2572

[2]

Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W. MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Applied Catalysis B: Environmental, 2006, 62(3-4): 265–273

[3]

Bai B, Arandiyan H, Li J. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Applied Catalysis B: Environmental, 2013, 142-143: 677–683

[4]

Quiroz Torres J, Royer S, Bellat J P, Giraudon J M, Lamonier J F. Formaldehyde: catalytic oxidation as a promising soft way of elimination. ChemSusChem, 2013, 6(4): 578–592

[5]

Tian H, He J, Liu L, Wang D, Hao Z, Ma C. Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde. Microporous and Mesoporous Materials, 2012, 151(15): 397–402

[6]

Ma C, Wang D, Xue W, Dou B, Wang H, Hao Z. Investigation of formaldehyde oxidation over Co3O4-CeO2 and Au/Co3O4–CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. Environmental Science & Technology, 2011, 45(8): 3628–3634

[7]

Wang Y, Zhu A, Chen B, Crocker M, Shi C. Three-dimensional ordered mesoporous Co–Mn oxide: a highly active catalyst for “storage–oxidation” cycling for the removal of formaldehyde. Catalysis Communications, 2013, 36: 52–57

[8]

Tang X, Chen J, Li Y, Li Y, Xu Y, Shen W. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts. Chemical Engineering Journal, 2006, 118(1-2): 119–125

[9]

Chen B, Zhu X, Crocker M, Wang Y, Shi C. Complete oxidation of formaldehyde at ambient temperature over γ-Al2O3 supported Au catalyst. Catalysis Communications, 2013, 42: 93–97

[10]

Zhou L, Zhang J, He J, Hu Y, Tian H. Control over the morphology and structure of manganese oxide by tuning reaction conditions and catalytic performance for formaldehyde oxidation. Materials Research Bulletin, 2011, 46(10): 1714–1722

[11]

Tian H, He J, Zhang X, Zhou L, Wang D. Facile synthesis of porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation. Microporous and Mesoporous Materials, 2011, 138(1-3): 118–122

[12]

Chen H, He J, Zhang C, He H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. Journal of Physical Chemistry C, 2007, 111(49): 18033–18038

[13]

Lamaita L, Peluso M A, Sambeth J E, Thomas H, Mineli G, Porta P. A theoretical and experimental study of manganese oxides used as catalysts for VOCs emission reduction. Catalysis Today, 2005, 107-108: 133–138

[14]

Fu X, Feng J, Wang H, Ng K M. Fast synthesis and formation mechanism of γ-MnO2 hollow nanospheres for aerobic oxidation of alcohols. Materials Research Bulletin, 2010, 45(9): 1218–1223

[15]

Li D, Wu X, Chen Y. Synthesis of hierarchical hollow MnO2 microspheres and potential application in abatement of VOCs. Journal of Physical Chemistry C, 2013, 117(21): 11040–11046

[16]

Yu X, He J, Wang D, Hu Y, Tian H, He Z. Facile controlled synthesis of Pt/MnO2 nanostructured catalysts and their catalytic performance for oxidative decomposition of formaldehyde. Journal of Physical Chemistry C, 2012, 116(1): 851–860

[17]

Yu X, He J, Wang D, Hu Y C, Tian H, Dong T, He Z. Au–Pt bimetallic nanoparticles supported on nest-likeMnO2: synthesis and application in HCHO decomposition. Journal of Nanoparticle Research, 2012, 14(11): 1260–1273

[18]

Munaiah Y, Gnana Sundara Raj B, Prem Kumar T, Ragupathy P. Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(13): 4300–4306

[19]

Sing K S W, Evrett D H, Haul R A W, Moscou L, Pierotti R A, Rouqerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4): 603–619

[20]

Torres J Q, Giraudon J M, Lamonier J F. Formaldehyde total oxidation over mesoporous MnOx catalysts. Catalysis Today, 2011, 176(1): 277–280

[21]

Li X, Cui Y, Yang X, Dai W, Fan K. Highly efficient and stable Au/Mn2O3 catalyst for oxidative cyclization of 1,4-butanediol to γ-butyrolactone. Applied Catalysis A, General, 2013, 458(10): 63–70

[22]

Lin X, Uzayisenga V, Li J, Fang P, Wu D Y, Ren B, Tian Z Q. Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Journal of Raman Spectroscopy : JRS, 2012, 43(1): 40–45

[23]

Longo A, Liotta L F, Carlo G D, Giannici F, Venezia A M, Martorana A. Structure and the metal support interaction of the Au/Mn oxide catalysts. Chemistry of Materials, 2010, 22(13): 3952–3960

[24]

Wang L, Liu Y, Chen M, Cao Y, He H Y, Fan K N. MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation. Journal of Physical Chemistry C, 2008, 112(17): 6981–6987

[25]

Wang L C, Huang X S, Liu Q, Liu Y M, Cao Y, He H Y, Fan K N, Zhuang J H. Gold nanoparticles deposited on manganese (III) oxide as novel efficient catalyst for low temperature CO oxidation. Journal of Catalysis, 2008, 259(1): 66–74

[26]

Ye Q, Zhao J, Huo F, Wang D, Cheng S, Kang T, Dai H. Nanosized Au supported on three-dimensionally ordered mesoporous β-MnO2: highly active catalysts for the low-temperature oxidation of carbon monoxide, benzene, and toluene. Microporous and Mesoporous Materials, 2013, 172: 20–29

[27]

Durand J P, Senanayake S D, Suib S L, Mullins D R. Reaction of formic acid over amorphous manganese oxide catalytic systems: an in situ study. Journal of Physical Chemistry C, 2010, 114(47): 20000–20006

[28]

Chen D, Qu Z, Sun Y, Gao K, Wang Y. Identification of reaction intermediates and mechanism responsible for highly active HCHO oxidation on Ag/MCM-41 catalysts. Applied Catalysis B: Environmental, 2013, 142-143: 838–848

[29]

Kecskés T, Raskó J, Kiss J. FTIR and mass spectrometric studies on the interaction of formaldehyde with TiO2 supported Pt and Au catalysts. Applied Catalysis A: General, 2004, 273(1-2): 55–62

[30]

Laberty C, Marquez-Alvarez C, Drouet C, Alphonse P, Mirodatos C. CO oxidation over nonstoichiometric nickel manganite spinels. Journal of Catalysis, 2001, 198(2): 266–276

[31]

Busca G, Lamotte J, Lavalley J, Lorenzelli V. FT-IR study of the adsorption and transformation of formaldehyde on oxide surfaces. Journal of the American Chemical Society, 1987, 109(17): 5197–5202

[32]

Popova G A, Budneva A A, Andrushkevich T V. Identification of adsorption forms by ir spectroscopy for formaldehyde and formic acid on K3PMo12O40. Reaction Kinetics and Catalysis Letters, 1997, 61(2): 353–362

[33]

Chen B, Shi C, Crocker M, Wang Y, Zhu A. Catalytic removal of formaldehyde at room temperature over supported gold Catalysts. Applied Catalysis B: Environmental, 2013, 132-133: 245–255

[34]

Zhao D Z, Shi C, Li X, Zhu A, Jang B W.-L. Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature. Journal of Hazardous Materials, 2012, 239-240: 362–369

[35]

Bond G C, Thompson D T. Gold-catalysed oxidation of carbon monoxide. Gold Bulletin, 2000, 33(2): 41–50

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1145KB)

Supplementary files

FSE-15025-OF-PGL_suppl_1

3013

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/