Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons

Bhanukiran SUNKARA , Yang SU , Jingjing ZHAN , Jibao HE , Gary L. MCPHERSON , Vijay T. JOHN

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 939 -947.

PDF (1450KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 939 -947. DOI: 10.1007/s11783-015-0807-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons

Author information +
History +
PDF (1450KB)

Abstract

Iron-carbon (Fe-C) composite microspheres prepared through a facile aerosol-based process are effective remediation agents for the simultaneous adsorption and reduction of chlorinated hydrocarbons. Complete dechlorination was achieved for the class of chlorinated ethenes that include tetrachloroethylene (PCE), trichloroethylene (TCE), cis- and trans-1,2-dicloroethylene (c-DCE, t-DCE), 1,1-dichloroethylene (1,1-DCE) and, vinyl chloride (VC). The Fe-C particles potentially provides multi-functionality with requisite characteristics of adsorption, reaction, and transport for the effective in situ remediation of chlorinated hydrocarbons. The carbon support immobilizes the ferromagnetic iron nanoparticles onto its surface, thereby inhibiting aggregation. The adsorptive nature of the carbon support prevents the release of toxic intermediates such as the dichloroethylenes and vinyl chloride. The adsorption of chlorinated ethenes on the Fe-C composites is higher (>80%) than that of humic acid (<35%) and comparable to adsorption on commercial activated carbons (>90%). The aerosol-based process is an efficient method to prepare adsorptive-reactive composite particles in the optimal size range for transport through the porous media and as effective targeted delivery agents for the in situ remediation of soil and groundwater contaminants.

Keywords

chlorinated ethene / iron-carbon / aerosol / adsorption / reductive dechlorination

Cite this article

Download citation ▾
Bhanukiran SUNKARA, Yang SU, Jingjing ZHAN, Jibao HE, Gary L. MCPHERSON, Vijay T. JOHN. Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons. Front. Environ. Sci. Eng., 2015, 9(5): 939-947 DOI:10.1007/s11783-015-0807-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Matheson L JTratnyek P G. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology199428(12): 2045–2053

[2]

Orth W SGillham R W. Dechlorination of trichloroethene in aqueous solution using Fe0Environmental Science & Technology199630(1): 66–71

[3]

Doong R AChen K TTsai H C. Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants. Environmental Science & Technology200337(11): 2575–2581

[4]

Lowry GReinhard M. Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control, and oxidative catalyst regeneration. Environmental Science & Technology200034(15): 3217–3223

[5]

Schrick BBlough J LJones A DMallouk T E. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chemistry of Materials200214(12): 5140–5147

[6]

Liu YMajetich S ATilton R DSholl D SLowry G V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology200539(5): 1338–1345

[7]

Liu YChoi HDionysiou DLowry G V. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials200517(21): 5315–5322

[8]

Elliott D WZhang W X. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology200135(24): 4922–4926

[9]

Zheng TZhan JHe JDay CLu YMcPherson G LPiringer GJohn V T. Reactivity characteristics of nanoscale zerovalent iron—silica composites for trichloroethylene remediation. Environmental Science & Technology200842(12): 4494–4499

[10]

O’Carroll DSleep BKrol MBoparai HKocur C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources201351: 104–122

[11]

Phenrat TSaleh NSirk KTilton R DLowry G V. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology200741(1): 284–290

[12]

SchrickBHydutskyB WBloughJ LMalloukT E. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials200416(11): 2187–2193

[13]

He FZhao D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology200539(9): 3314–3320

[14]

Phenrat TSaleh NSirk KKim H JTilton R DLowry G V. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research200810(5): 795–814

[15]

He FZhao DLiu JRoberts C B. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research200746(1): 29–34

[16]

He  F,  Zhao  D.  Manipulating the  size  and  dispersibility  of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology200741(17): 6216–6221

[17]

Quinn JGeiger CClausen CBrooks KCoon CO’Hara SKrug TMajor DYoon W SGavaskar AHoldsworth T. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science & Technology200539(5): 1309–1318

[18]

Saleh NPhenrat TSirk KDufour BOk JSarbu TMatyjaszewski KTilton R DLowry G V. Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters20055(12): 2489–2494

[19]

Zhan JSunkara BLe LJohn V THe JMcPherson G LPiringer GLu Y. Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology200943(22): 8616–8621

[20]

Sunkara BZhan JHe JMcPherson G LPiringer GJohn V T. Nanoscale zerovalentiron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons. ACS Applied Materials & Interfaces20102(10): 2854–2862

[21]

Zhan JKolesnichenko ISunkara BHe JMcPherson G LPiringer GJohn V T. Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology201145(5): 1949–1954

[22]

Sunkara BZhan JKolesnichenko IWang YHe JHolland J EMcPherson G LJohn V T. Modifying metal nanoparticle placement on carbon supports using an aerosol-based process, with application to the environmental remediation of chlorinated hydrocarbons. Langmuir201127(12): 7854–7859

[23]

Zhan JSunkara BTang JWang YHe JMcPherson G LJohn V T. Carbothermalsynthesis of aerosol-based adsorptive-reactive iron–carbon particles for the remediation of chlorinated hydrocarbons. Industrial & Engineering Chemistry Research201150(23): 13021–13029

[24]

Zhan JZheng TPiringer GDay CMcPherson G LLu YPapadopoulos KJohn V T. Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology200842(23): 8871–8876

[25]

Bleyl SKopinke F DGeorgi AMackenzie K. Carbo-iron—atailored reagent for in situ groundwater remediation. Chemieingenieurtechnik (Weinheim)201385: 1302–1311

[26]

Busch JMeißner TPotthoff AOswald S E. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. Journal of Contaminant Hydrology2014164: 25–34

[27]

Mackenzie KBleyl SGeorgi AKopinke F D. Carbo-iron—an Fe/AC composite—as alternative to nano-iron for groundwater treatment. Water Research201246(12): 3817–3826

[28]

Lien H LZhang W. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects2001191(1–2): 97–105

[29]

Muftikian RFernando QKorte N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Research199529(10): 2434–2439

[30]

Nyer E KVance D B. Nano-scale iron for dehalogenation. Ground Water Monitoring and Remediation20012(2): 41–46

[31]

Wang CZhang W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology199731(7): 2154–2156

[32]

Hess D R. Nebulizers: principles and performance. Respiratory Care200045(6): 609–622

[33]

Phenrat TLiu YTilton R DLowry G V. Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environmental Science & Technology200943(5): 1507–1514

[34]

Gossett J M. Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons. Environmental Science & Technology198721(2): 202–208

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1450KB)

2757

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/