Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal

Jingya SHEN , Yuliang SUN , Liping HUANG , Jinhui YANG

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 1084 -1095.

PDF (1611KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 1084 -1095. DOI: 10.1007/s11783-015-0805-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal

Author information +
History +
PDF (1611KB)

Abstract

Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg∙L−1∙h−1 for Cu(II) at an initial concentration of 50 mg∙L−1 and 5.3±0.4 mg∙L−1 h−1 for Co(II) at an initial 40 mg∙L−1 were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg∙L−1∙h−1) and Co(II) (6.4 mg∙L−1∙h−1) with concomitantly achieving hydrogen generation (0.05±0.00 mol∙mol−1 COD). Phylogenetic analysis on the biocathodes indicates Proteobacteria dominantly accounted for 67.9% of the total reads, followed by Firmicutes (14.0%), Bacteroidetes (6.1%), Tenericutes (2.5%), Lentisphaerae (1.4%), and Synergistetes (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.

Keywords

biocathode / microbial electrolysis cell / microbial fuel cell / Cu(II) removal / Co(II) removal

Cite this article

Download citation ▾
Jingya SHEN, Yuliang SUN, Liping HUANG, Jinhui YANG. Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal. Front. Environ. Sci. Eng., 2015, 9(6): 1084-1095 DOI:10.1007/s11783-015-0805-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Freitas M B J GCelante V GPietre M K. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. Journal of Power Sources2010195(10): 3309–3315

[2]

Tao H CLiang MLi WZhang L JNi J RWu W M. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. Journal of Hazardous Materials2011189(1−2): 186–192

[3]

Jiang LHuang LSun Y. Recovery of flakey cobalt from aqueous Co(II) with simultaneous hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy201439(2): 654–663

[4]

Li WYu HHe Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy & Environmental Science20147(3): 911–924

[5]

Modin OWang XWu XRauch SFedje K K. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. Journal of Hazardous Materials2012235−236: 291–297

[6]

Tao H CLei TShi GSun X NWei X YZhang L JWu W M. Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. Journal of Hazardous Materials2014264: 1–7

[7]

Luo HLiu GZhang RBai YFu SHou Y. Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. Journal of Hazardous Materials2014270: 153–159

[8]

Luo HQin BLiu GZhang RTang YHou Y. Selective recovery of Cu2+ and Ni2+ from wastewater using bioelectrochemical system. Frontiers of Environmental Science & Engineering20159(3): 522–527.

[9]

Wu DPan YHuang LQuan XYang J. Comparison of Co(II) reduction on three different cathodes of microbial electrolysis cells driven by Cu(II)-reduced microbial fuel cells under various cathode volume conditions. Chemical Engineering Journal2015266: 121–132

[10]

Wu DPan YHuang LZhou PQuan XChen H. Complete separation of Cu(II), Co(II) and Li(I) using self-driven MFCs-MECs with stainless steel mesh cathodes under continuous flow conditions. Separation and Purification Technology2015147: 114–124

[11]

Rosenbaum M AFranks A E. Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Applied Microbiology and Biotechnology201498(2): 509–518

[12]

Wang ACheng HRen NCui DLin NWu W. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Frontiers of Environmental Science & Engineering20126(4): 569–574

[13]

Xia XSun YLiang PHuang X. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization. Bioresource Technology2012120: 26–33

[14]

Huang LRegan J MQuan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technology2011102(1): 316–323

[15]

Wang YLiu XLi WLi FWang YSheng GZeng RYu H. A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment. Applied Energy201298: 230–235

[16]

Fradler K RMichie IDinsdale R MGuwy A JPremier G C. Augmenting microbial fuel cell power by coupling with supported liquid membrane permeation for zinc recovery. Water Research201455: 115–125

[17]

Huang LYao BWu DQuan X. Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell-microbial electrolysis cell systems. Journal of Power Sources2014259: 54–64

[18]

Huang LChai XChen GLogan B E. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environmental Science & Technology201145(11): 5025–5031

[19]

Wang A JCheng H YLiang BRen N QCui DLin NKim B HRabaey K. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environmental Science & Technology201145(23): 10186–10193

[20]

Zhang GZhao QJiao YZhang JJiang JRen NKim B H. Improved performance of microbial fuel cell using combination biocathode of graphite fiber brush and graphite granules. Journal of Power Sources2011196(15): 6036–6041

[21]

Huang LChai XQuan XLogan B EChen G. Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresource Technology2012111: 167–174

[22]

Liang PWei JLi MHuang X. Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode. Frontiers of Environmental Science & Engineering20137(6): 913–919

[23]

Fan YHu HLiu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources2007171(2): 348–354

[24]

Fan YHan S KLiu H. Improved performance of CEA microbial fuel cells with increased reactor size. Energy & Environmental Science20125(8): 8273–8280

[25]

Logan B E. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. ChemSusChem20125(6): 988–994

[26]

Zhang YYu LWu DHuang LZhou PQuan XChen G. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells. Journal of Power Sources2015273: 1103–1113

[27]

Varia JMartínez S SOrta S VBull SRoy S. Bioelectrochemical metal remediation and recovery of Au3+, Co2+ and Fe3+ metal ions. Electrochimica Acta201395: 125–131

[28]

Batlle-Vilanova PPuig SGonzalez-Olmos RVilajeliu-Pons ABañeras LBalaguer M DColprim J. Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy201439(3): 1297–1305

[29]

Sharma MBajracharya SGildemyn SPatil S AAlvarez-Gallego YPant DRabaey KDominguez-Benetton X. A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochimica Acta2014140: 191–208

[30]

Harnisch FFreguia S. A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms. Chemistry, an Asian Journal20127(3): 466–475

[31]

Huang LLiu YYu LQuan XChen G. A new clean approach for production of cobalt dihydroxide from aqueous Co(II) using oxygen-reducing biocathode microbial fuel cells. Journal of Cleaner Production201586: 441–446

[32]

Huang LShi YWang NDong Y. Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells. Biodegradation201425(4): 615–632

[33]

Silva-Martínez SRoy S. Copper recovery from tin stripping solution: Galvanostatic deposition in a batch-recycle system. Separation and Purification Technology2013118: 6–12

[34]

Cheng S AWang B SWang Y H. Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters. Bioresource Technology2013147: 332–337

[35]

Liao LXu X WJiang X WWang C SZhang D SNi J YWu M. Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiology Ecology201178(3): 565–585

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1611KB)

Supplementary files

Supplementary Material

3090

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/