Combination of the direct electro-Fenton process and bioremediation for the treatment of pyrene-contaminated soil in a slurry reactor

Wendi XU , Shuhai GUO , Gang LI , Fengmei LI , Bo WU , Xinhong GAN

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 1096 -1107.

PDF (743KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 1096 -1107. DOI: 10.1007/s11783-015-0804-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Combination of the direct electro-Fenton process and bioremediation for the treatment of pyrene-contaminated soil in a slurry reactor

Author information +
History +
PDF (743KB)

Abstract

A combined treatment technology (DEF-BIO) using the direct electro-Fenton (DEF) process and bioremediation (BIO) was established in this study. The performance of the DEF-BIO process on the remediation of a pyrene (PYR)-contaminated soil was evaluated in a slurry reactor. The appropriate order of application was to conduct the DEF process followed by BIO, evaluated through analysis of the degradation characteristics of each process individually. In addition, the application time of the DEF process affected the efficiency of the combined process. The optimum time to apply the DEF process was determined through an analysis of the induced changes in PYR intermediates, pH, soil organic matter (SOM) and bacteria. The optimum application time of the DEF process was 6 h. All the induced changes were beneficial for the BIO phase. The removal of PYR was 91.02% for DEF–BIO after 72 h, and the efficiency was almost 50% increased, compared with the individual DEF and BIO treatments. Therefore, the combined process of DEF–BIO process may be an efficient and promising method for the remediation.

Keywords

direct electro-Fenton / bioremediation / slurry reactor / combined process / pyrene

Cite this article

Download citation ▾
Wendi XU, Shuhai GUO, Gang LI, Fengmei LI, Bo WU, Xinhong GAN. Combination of the direct electro-Fenton process and bioremediation for the treatment of pyrene-contaminated soil in a slurry reactor. Front. Environ. Sci. Eng., 2015, 9(6): 1096-1107 DOI:10.1007/s11783-015-0804-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qiao JZhang CLuo SChen W. Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds removal. Frontiers of Environmental Science & Engineering20138(2): 293–304

[2]

Li X JLi PLin XZhang C GLi QGong Z Q. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. Journal of Hazardous Materials2008150(1): 21–26

[3]

Mohan S VPrasanna DReddy B PSarma P N. Ex situ bioremediation of pyrene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode: influence of bioaugmentation. International Biodeterioration & Biodegradation200862(2): 162–169

[4]

Di Gennaro PFranzetti ABestetti GLasagni MPitea DCollina E. Slurry phase bioremediation of PAHs in industrial landfill samples at laboratory scale. Waste Management (New York, N.Y.)200828(8): 1338–1345

[5]

Collina EBestetti GDi Gennaro PFranzetti AGugliersi FLasagni MPitea D. Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor. Environment International200531(2): 167–171

[6]

Juwarkar A ASingh S KMudhoo A. A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Biotechnology20109(3): 215–288

[7]

Rosales EPazos MSanromán M A. Advances in the electro-Fenton process for remediation of recalcitrant organic compounds. Chemical Engineering & Technology201235(4): 609–617

[8]

Kao C MWu M J. Enhanced TCDD degradation by Fenton’s reagent preoxidation. Journal of Hazardous Materials200074(3): 197–211

[9]

Oonnittan AIsosaari PSillanpää M. Oxidant availability in soil and its effect on HCB removal during electrokinetic Fenton process. Separation and Purification Technology201076(2): 146–150

[10]

Weeks K RBruell C JMohanty N R. Use of Fenton’s reagent for the degradation of TCE in aqueous systems and soil slurries. Soil & Sediment Contamination20009(4): 331–345

[11]

Moussavi GBagheri AKhavanin A. The investigation of degradation and mineralization of high concentrations of formaldehyde in an electro-Fenton process combined with the biodegradation. Journal of Hazardous Materials2012237−238: 147–152

[12]

Ferrag-Siagh FFourcade FSoutrel IAït-Amar HDjelal HAmrane A. Tetracycline degradation and mineralization by the coupling of an electro-Fenton pretreatment and a biological process. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire)201388(7): 1380–1386

[13]

Harimurti SDutta B KAriff IChakrabarti SVione D. Degradation of monoethanolamine in aqueous solution by Fenton’s reagent with biological post-treatment. Water, Air, and Soil Pollution2010211(1−4): 273–286

[14]

Yuan Y. Coordinated effect of electrokinetics on the biodegradation of alkanes in soil. Shenyang: Institute of Applied Ecology, Chinese Academy of Sciences, 2013 (in Chinese)

[15]

Aburto-Medina AAdetutu E MAleer SWeber JPatil S SSheppard P JBall A SJuhasz A L. Comparison of indigenous and exogenous microbial populations during slurry phase biodegradation of long-term hydrocarbon-contaminated soil. Biodegradation201223(6): 813–822

[16]

Nasseri SKalantary R RNourieh NNaddafi KMahvi A HBaradaran N. Influence of bioaugmentation in biodegradation of PAHs-contaminated soil in bio-slurry phase reactor. Iranian Journal of Environmental Health Sciences & Engineering20107(3): 199–208

[17]

D.Or B F S. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Advances in Water Resources200730(6−7): 1505–1527

[18]

Huang D NGuo S HLi T TWu B. Coupling interactions between electrokinetics and bioremediation for pyrene removal from soil under polarity reversal conditions. Clean—Soil, Air. Water (Basel)201341(4): 383–389

[19]

Jen J FLeu M FYang T C. Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography. Journal of Chromatography. A1998796(2): 283–288

[20]

Ren X RShao K STang X Y. Determination of salicylic acid and its hydroxylated products using high performance liquid chromatography and fluorescence detection. Chinese Journal of Chromatography200119(2): 191–192 (in Chinese)

[21]

Guo S HFan R JLi T THartog NLi F MYang X L. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum-contaminated soil. Chemosphere2014109: 226–233

[22]

Sun H WYan Q S. Influence of Fenton oxidation on soil organic matter and its sorption and desorption of pyrene. Journal of Hazardous Materials2007144(1−2): 164–170

[23]

Dong Y CDong W JCao Y NHan Z BDing Z Z. Preparation and catalytic activity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation. Catalysis Today2011175(1): 346–355

[24]

Zhen G YLu X QWang B YZhao Y CChai X LNiu D JZhao T T. Enhanced dewatering characteristics of waste activated sludge with Fenton pretreatment: effectiveness and statistical optimization. Frontiers of Environmental Science & Engineering20148(2): 267–276

[25]

de Luna M DVeciana M LSu C CLu M C. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell. Journal of Hazardous Materials2012217−218: 200–207

[26]

Flotron VDelteil CPadellec YCamel V. Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere200559(10): 1427–1437

[27]

Wang A MLi Y YRu J. The mechanism and application of the electro-Fenton process for azo dye Acid Red 14 degradation using an activated carbon fibre felt cathode. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire)201085(11): 1463–1470

[28]

Wang Y JLi X YZhen L MZhang H QZhang YWang C W<?Pub Caret?>. Electro-Fenton treatment of concentrates generated in nanofiltration of biologically pretreated landfill leachate. Journal of Hazardous Materials2012229−230: 115–121

[29]

Moscoso FTeijiz IDeive F JSanromán M A. Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresource Technology2012119: 270–276

[30]

Liang Y N. Pyrene degradation by mycobacterium SP.KMS: Biochemical-pathway, enzymatic mechanisms, and humic acid effect. USA: Utah State University, 2006

[31]

Zeng YHong P K AWavrek D A. Chemical-biological treatment of pyrene. Water Research200034(4): 1157–1172

[32]

Liang YBritt D WMcLean J ESorensen D LSims R C. Humic acid effect on pyrene degradation: finding an optimal range for pyrene solubility and mineralization enhancement. Applied Microbiology and Biotechnology200774(6): 1368–1375

[33]

Chamarro EMarco AEsplugas S. Use of Fenton reagent to improve organic chemical biodegradability. Water Research200135(4): 1047–1051

[34]

Bogan B WTrbovic V. Effect of sequestration on PAH degradability with Fenton’s reagent: roles of total organic carbon, humin, and soil porosity. Journal of Hazardous Materials2003100(1−3): 285–300

[35]

Gryzenia JCassidy DHampton D. Production and accumulation of surfactants during the chemical oxidation of PAH in soil. Chemosphere200977(4): 540–545

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (743KB)

2956

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/