Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid
Minhui XU, Xiaogang GU, Shuguang LU, Zhouwei MIAO, Xueke ZANG, Xiaoliang WU, Zhaofu QIU, Qian SUI
Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid
The thermally activated persulfate (PS) degradation of carbon tetrachloride (CT) in the presence of formic acid (FA) was investigated. The results indicated that CT degradation followed a zero order kinetic model, and was responsible for the degradation of CT confirmed by radical scavenger tests. CT degradation rate increased with increasing PS or FA dosage, and the initial CT had no effect on CT degradation rate. However, the initial solution pH had effect on the degradation of CT, and the best CT degradation occurred at initial pH 6. Cl- had a negative effect on CT degradation, and high concentration of Cl- displayed much strong inhibition. Ten mmol·L-1 promoted CT degradation, while 100 mmol·L-1 inhibited the degradation of CT, but promoted CT degradation in the presence of FA. The measured Cl- concentration released into solution along with CT degradation was 75.8% of the total theoretical dechlorination yield, but no chlorinated intermediates were detected. The split of C-Cl was proposed as the possible reaction pathways in CT degradation. In conclusion, this study strongly demonstrated that the thermally activated PS system in the presence of FA is a promising technique in in situ chemical oxidation (ISCO) remediation for CT contaminated site.
persulfate / carbon tetrachloride / thermal activation / formic acid / carbon dioxide radical anion
[1] |
Choi J, Choi K, Lee W. Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1,1,1-trichloroethane by FeS. Journal of Hazardous Materials, 2009, 162(2-3): 1151-1158
CrossRef
Pubmed
Google scholar
|
[2] |
TÁmara M L, Butler E C. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal. Environmental Science & Technology, 2004, 38(6): 1866-1876
CrossRef
Pubmed
Google scholar
|
[3] |
Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O-) in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886
CrossRef
Google scholar
|
[4] |
Gu X G, Lu S G, Li L, Qiu Z F, Sui Q, Lin K F, Luo Q S. Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate. Industrial & Engineering Chemistry Research, 2011, 50(19): 11029-11036
CrossRef
Google scholar
|
[5] |
Liang C, Bruell C J, Marley M C, Sperry K L. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 2004, 55(9): 1213-1223
CrossRef
Pubmed
Google scholar
|
[6] |
Fang G D, Dionysiou D D, Al-Abed S R, Zhou D M. Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs. Applied Catalysis B: Environmental, 2013, 129(2): 325-332
CrossRef
Google scholar
|
[7] |
Fang G, Gao J, Dionysiou D D, Liu C, Zhou D. Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environmental Science & Technology, 2013, 47(9): 4605-4611
CrossRef
Pubmed
Google scholar
|
[8] |
Ahmad M, Teel A L, Watts R J. Mechanism of persulfate activation by phenols. Environmental Science & Technology, 2013, 47(11): 5864-5871
CrossRef
Pubmed
Google scholar
|
[9] |
Zhao J Y, Zhang Y B, Quan X, Chen S. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Separation and Purification Technology, 2010, 71(3): 302-307
CrossRef
Google scholar
|
[10] |
House D A. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 1962, 62(3): 185-203
CrossRef
Google scholar
|
[11] |
Pennington D E, Haim A. Stoichiometry and mechanism of the chromium(II)—peroxydisulfate reaction. Journal of the American Chemical Society, 2002, 90(14): 3700-3704
CrossRef
Google scholar
|
[12] |
Peyton G R. The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry, 1993, 41(1-3): 91-103
CrossRef
Google scholar
|
[13] |
Kolthoff I M, Miller I K. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1. Journal of the American Chemical Society, 1951, 73(7): 3055-3059
CrossRef
Google scholar
|
[14] |
Watts R J, Bottenberg B C, HessT F, Jensen M D, Teel A L. Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactions. Environmental Science & Technology, 1999, 33(19): 3432-3437
CrossRef
Google scholar
|
[15] |
Bielski B H, Cabelli D E, Arudi R L, Ross A B. Reactivity of HO2/
CrossRef
Google scholar
|
[16] |
Liang C J, Bruell C J, Marley M C, Sperry K L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil & Sediment Contamination, 2003, 12(2): 207-228
CrossRef
Google scholar
|
[17] |
Mora V C, Rosso J A, Carrillo Le Roux G, Mártire D O, Gonzalez M C. Thermally activated peroxydisulfate in the presence of additives: a clean method for the degradation of pollutants. Chemosphere, 2009, 75(10): 1405-1409
CrossRef
Pubmed
Google scholar
|
[18] |
Lin M Z, Katsumura Y, Muroya Y, He H, Miyazaki T, Hiroishi D. Pluse radiolysis of sodium formate aqueous solution up to 400°C: absorption spectra, kinetics and yield of carboxyl radical
CrossRef
Google scholar
|
[19] |
Liang C, Huang C F, Mohanty N, Kurakalva R M. A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 2008, 73(9): 1540-1543
CrossRef
Pubmed
Google scholar
|
[20] |
Xu M, Gu X, Lu S, Qiu Z, Sui Q, Miao Z, Zang X, Wu X. Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system. Journal of Hazardous Materials, 2015, 286: 7-14
CrossRef
Pubmed
Google scholar
|
[21] |
Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284
CrossRef
Google scholar
|
[22] |
Mulazzani Q G, D’Angelantonio M, Venturi M, Hoffman M Z, Rodgers M A. Interaction of formate and oxalate ions with radiation-generated radicals in aqueous solution. Methylviologen as a mechanistic probe. Journal of Physical Chemistry, 1986, 90(21): 5347-5352
CrossRef
Google scholar
|
[23] |
Berkovic A M, Gonzalez M C, Russo N, Michelini M C, Pis Diez R, Mártire D O. Reduction of mercury(II) by the carbon dioxide radical anion: a theoretical and experimental investigation. Journal of Physical Chemistry A, 2010, 114(49): 12845-12850
CrossRef
Pubmed
Google scholar
|
[24] |
Das T N, Ghanty T K, Pal H. Reactions of methyl viologen dication (MV2+) with H atoms in aqueous solution: mechanism derived from pulse radiolysis measurements and ab initio mo calculations. Journal of Physical Chemistry A, 2003, 107(31): 5998-6006
CrossRef
Google scholar
|
[25] |
Gonzalez M C, Le Roux G C, Rosso J A, Braun A M. Mineralization of CCl4 by the UVC-photolysis of hydrogen peroxide in the presence of methanol. Chemosphere, 2007, 69(8): 1238-1244
CrossRef
Pubmed
Google scholar
|
[26] |
Cooper W J, Cramer C J, Martin N H, Mezyk S P, O’Shea K E, von Sonntag C. Free radical mechanisms for the treatment of methyl tert-butyl ether (MTBE) via advanced oxidation/reductive processes in aqueous solutions. Chemical Reviews, 2009, 109(3): 1302-1345
CrossRef
Pubmed
Google scholar
|
[27] |
Flyunt R, Schuchmann M N, von Sonntag C. A common carbanion intermediate in the recombination and proton-catalysed disproportionation of the carboxyl radical anion,
CrossRef
Pubmed
Google scholar
|
[28] |
Morkovinik A F, Okhlobystin O Y. Inorganic radical-ions and their organic reactions. Russian Chemical Reviews, 1979, 48(11): 1055-1075
CrossRef
Google scholar
|
[29] |
Buxton G V, Bydder M, Salmon G A. The reactivity of chlorine atoms in aqueous solution, Part II. The reactivity of chlorine atoms in aqueous solution II: The equilibrium
CrossRef
Google scholar
|
[30] |
Regino C A, Richardson D E. Bicarbonate-catalyzed hydrogen peroxide oxidation of cysteine and related thiols. Inorganica Chimica Acta, 2007, 360(14): 3971-3977
CrossRef
Google scholar
|
[31] |
Draganić Z D, Negrón-Mendoza A, Sehested K, Vujošević S I, Navarro-Gonzáles R, Albarrán-SanchezM G, Draganić I G. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range. International Journal of Radiation Applications and Instrumentation Part C Radiation Physics and Chemistry, 1991, 38(3): 317-321
CrossRef
Google scholar
|
[32] |
Padmaja S, Neta P, Huie R E. Rate constants for some reactions of inorganic radicals with inorganic ions. Temperature and solvent dependence. International Journal of Chemical Kinetics, 1993, 25(6): 445-455
CrossRef
Google scholar
|
[33] |
Neta P, Grodkowsk J, Ross A B. Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 1996, 25(3): 709-1050
CrossRef
Google scholar
|
[34] |
McCormick M L, Adriaens P. Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles. Environmental Science & Technology, 2004, 38(4): 1045-1053
CrossRef
Pubmed
Google scholar
|
[35] |
McCormick M L, Bouwer E J, Adriaens P. Carbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions. Environmental Science & Technology, 2002, 36(3): 403-410
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |