Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control
Xuezhen QIU, Yun ZHU, Carey JANG, Che-Jen LIN, Shuxiao WANG, Joshua FU, Junping XIE, Jiandong WANG, Dian DING, Shicheng LONG
Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control
Efficient air quality management is critical to protect public health from the adverse impacts of air pollution. To evaluate the effectiveness of air pollution control strategies, the US Environmental Protection Agency (US EPA) has developed the Software for Model Attainment Test-Community Edition (SMAT-CE) to assess the air quality attainment of emission reductions, and the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) to evaluate the health and economic benefits of air quality improvement respectively. Since scientific decision-making requires timely and coherent information, developing the linkage between SMAT-CE and BenMAP-CE into an integrated assessment platform is desirable. To address this need, a new module linking SMAT-CE to BenMAP-CE has been developed and tested. The new module streamlines the assessment of air quality and human health benefits for a proposed air pollution control strategy. It also implements an optimized data gridding algorithm which significantly enhances the computational efficiency without compromising accuracy. The performance of the integrated software package is demonstrated through a case study that evaluates the air quality and associated economic benefits of a national-level control strategy of PM2.5. The results of the case study show that the proposed emission reduction reduces the number of nonattainment sites from 379 to 25 based on the US National Ambient Air Quality Standards, leading to more than US$334 billion of economic benefits annually from improved public health. The integration of the science-based software tools in this study enhances the efficiency of developing effective and optimized emission control strategies for policy makers.
air quality assessment / human health benefit / economic benefit / air quality attainment assessment / air pollution control strategy / decision support system
[1] |
Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen Z J, Weinmayr G, Hoffmann B, Wolf K, Samoli E, Fischer P, Nieuwenhuijsen M, Vineis P, Xun W W, Katsouyanni K, Dimakopoulou K, Oudin A, Forsberg B, Modig L, Havulinna A S, Lanki T, Turunen A, Oftedal B, Nystad W, Nafstad P, de Faire U, Pedersen N L, Östenson C G, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen K T, Overvad K, Ellermann T, Eeftens M, Peeters P H, Meliefste K, Wang M, Bueno-de-Mesquita B, Sugiri D, Krämer U, Heinrich J, de Hoogh K, Key T, Peters A, Hampel R, Concin H, Nagel G, Ineichen A, Schaffner E, Probst-Hensch N, Künzli N, Schindler C, Schikowski T, Adam M, Phuleria H, Vilier A, Clavel-Chapelon F, Declercq C, Grioni S, Krogh V, Tsai M Y, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Katsoulis M, Trichopoulou A, Brunekreef B, Hoek G. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet, 2014, 383(9919): 785–795
CrossRef
Pubmed
Google scholar
|
[2] |
Kan H, Wong C M, Vichit-Vadakan N, Qian Z. Short-term association between sulfur dioxide and daily mortality: the Public Health and Air Pollution in Asia (PAPA) study. Environmental Research, 2010, 110(3): 258–264
CrossRef
Pubmed
Google scholar
|
[3] |
Wan Mahiyuddin W R, Sahani M, Aripin R, Latif M T, Thach T Q, Wong C M. Short-term effects of daily air pollution on mortality. Atmospheric Environment, 2013, 65(0): 69–79
CrossRef
Google scholar
|
[4] |
Dockery D W, Stone P H. Cardiovascular risks from fine particulate air pollution. New England Journal of Medicine, 2007, 356(5): 511–513
CrossRef
Pubmed
Google scholar
|
[5] |
Karakatsani A, Kapitsimadis F, Pipikou M, Chalbot M C, Kavouras I G, Orphanidou D, Papiris S, Katsouyanni K. Ambient air pollution and respiratory health effects in mail carriers. Environmental Research, 2010, 110(3): 278–285
CrossRef
Pubmed
Google scholar
|
[6] |
Tao Y, Mi S, Zhou S, Wang S, Xie X. Air pollution and hospital admissions for respiratory diseases in Lanzhou, China. Environmental Pollution, 2014, 185(0): 196–201
CrossRef
Pubmed
Google scholar
|
[7] |
World Health Organization. Burden of disease from Ambient Air Pollution for 2012. 2014. Available online at http://www.who.int/phe/health_topics/outdoorair/databases/AAP_BoD_results_March2014.pdf?ua=1 (accessed March 2014)
|
[8] |
Naiker Y, Diab R D, Zunckel M, Hayes E T. Introduction of local Air Quality Management in South Africa: overview and challenges. Environmental Science & Policy, 2012, 17(0): 62–71
CrossRef
Google scholar
|
[9] |
Ma G, Wang J, Yu F, Zhang Y, Cao D. An assessment of the potential health benefits of realizing the goals for PM10 in the updated Chinese Ambient Air Quality Standard. Frontiers of Environmental Science & Engineering, DOI: 10.1007/s11783-014-0738-x
|
[10] |
Carnevale C, Finzi G, Pisoni E, Volta M, Guariso G, Gianfreda R, Maffeis G, Thunis P, White L, Triacchini G. An integrated assessment tool to define effective air quality policies at regional scale. Environmental Modelling & Software, 2012, 38(0): 306–315
CrossRef
Google scholar
|
[11] |
Yang Y, Zhu Y, Jang C, Xie J P, Wang S X, Fu J, Lin C J, Ma J, Ding D, Qiu X Z, Lao Y W. Research and development of environmental benefits mapping and analysis program: community edition. Acta Scientiae Circumstantiae, 2013, 33(09): 2395–2401 (in Chinese)
|
[12] |
Wang H, Zhu Y, Jang C, Lin C J, Wang S, Fu J S, Gao J, Deng S, Xie J, Ding D, Qiu X, Long S. Design and demonstration of a next-generation air quality attainment assessment system for PM2.5 and O3. Journal of Environmental Sciences (China), 2015, 29(0): 178–188
CrossRef
Pubmed
Google scholar
|
[13] |
Lao Y W, Zhu Y, Carey J, Lin C J, Xing J, Chen Z R, Xie J P, Wang S X, Fu J. Research and development of regional air pollution control decision support tool based on response surface model. Acta Scientiae Circumstantiae, 2012, 32(8): 1913–1922 (in Chinese)
|
[14] |
Sun J, Schreifels J, Wang J, Fu J S, Wang S. Cost estimate of multi-pollutant abatement from the power sector in the Yangtze River Delta region of China. Energy Policy, 2014, 69(0): 478–488
CrossRef
Google scholar
|
[15] |
Microsoft. DotSpatial. 2013. Available online at http://dotspatial.codeplex.com/SourceControl/latest#Trunk/DotSpatial.Analysis/Voronoi.cs (accessed <Date>March, 2013</Date>)
|
[16] |
Abt Associates Inc. Modeled Attainment Test Software User's Manual. 2014. Available online at http://www.epa.gov/ttn/scram/guidance/guide/MATS_2-6-1_manual.pdf (accessed April 2014)
|
[17] |
U.S. EPA. Modeling Guidance for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze. 2014. Available online at http://www.epa.gov/ttn/scram/guidance/guide/Draft_O3-PM-RH_Modeling_Guidance-2014.pdf (accessed December, 2014)
|
[18] |
Fann N, Baker K R, Fulcher C M. Characterizing the PM2.5-related health benefits of emission reductions for 17 industrial, area and mobile emission sectors across the U.S. Environment International, 2012, 49: 141–151
|
[19] |
Davidson K, Hallberg A, McCubbin D, Hubbell B. Analysis of PM2.5 using the Environmental Benefits Mapping and Analysis Program (BenMAP). Journal of Toxicology and Environmental Health-part A-current Issues, 2007, 70(3–4): 332–346
CrossRef
Pubmed
Google scholar
|
[20] |
International R T I. Environmental Benefits Mapping and Analysis Program User's Manual Appendices. 2015. Available online at http://www2.epa.gov/sites/production/files/2015-04/documents/benmap-ce_user_manual_appendices_march_2015.pdf (accessed March 2015)
|
[21] |
International R T I. Environmental Benefits Mapping and Analysis Program User's Manual. 2015. Available online at http://www2.epa.gov/sites/production/files/2015-04/documents/benmap-ce_user_manual_march_2015.pdf (accessed March 2015)
|
[22] |
Krewski D, Jerrett M, Burnett R T, Ma R, Hughes E, Shi Y, Turner M C, Pope C A 3rd, Thurston G, Calle E E, Thun M J, Beckerman B, DeLuca P, Finkelstein N, Ito K, Moore D K, Newbold K B, Ramsay T, Ross Z, Shin H, Tempalski B. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Research Report (Health Effects Institute), 2009, 140(140): 5–114, discussion 115–136
Pubmed
|
[23] |
Woodruff T J, Grillo J, Schoendorf K C. The relationship between selected causes of postneonatal infant mortality and particulate air pollution in the United States. Environmental Health Perspectives, 1997, 105(6): 608–612
CrossRef
Pubmed
Google scholar
|
[24] |
Woodruff T J, Parker J D, Schoendorf K C. Fine particulate matter (PM2.5) air pollution and selected causes of postneonatal infant mortality in California. Environmental Health Perspectives, 2006, 114(5): 786–790
CrossRef
Pubmed
Google scholar
|
[25] |
Zanobetti A, Franklin M, Koutrakis P, Schwartz J. Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environmental Health, 2009, 8(1): 58
CrossRef
Pubmed
Google scholar
|
[26] |
Kloog I, Coull B A, Zanobetti A, Koutrakis P, Schwartz J D. Acute and chronic effects of particles on hospital admissions in New-England. PLoS ONE, 2012, 7(4): e34664
CrossRef
Pubmed
Google scholar
|
[27] |
Moolgavkar S H. Air pollution and hospital admissions for chronic obstructive pulmonary disease in three metropolitan areas in the United States. Inhalation Toxicology, 2000, 12(Suppl 4): 75–90
CrossRef
Pubmed
Google scholar
|
[28] |
Babin S M, Burkom H S, Holtry R S, Tabernero N R, Stokes L D, Davies-Cole J O, DeHaan K, Lee D H. Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001-2004, and associations with air quality, socio-economic status and age group. Environmental Health, 2007, 6(1): 9
CrossRef
Pubmed
Google scholar
|
[29] |
Bell M L, Ebisu K, Peng R D, Walker J, Samet J M, Zeger S L, Dominici F. Seasonal and regional short-term effects of fine particles on hospital admissions in 202 US counties, 1999–2005. American Journal of Epidemiology, 2008, 168(11): 1301–1310
CrossRef
Pubmed
Google scholar
|
[30] |
Bell M L. Assessment of the health impacts of particulate matter characteristics. Research Report (Health Effects Institute), 2012, 161(161): 5–38
Pubmed
|
[31] |
Moolgavkar S H. Air pollution and hospital admissions for diseases of the circulatory system in three U.S. metropolitan areas. Journal of the Air & Waste Management Association, 2000, 50(7): 1199–1206
CrossRef
Pubmed
Google scholar
|
[32] |
Abbey D E, Ostro B E, Petersen F, Burchette R J. Chronic respiratory symptoms associated with estimated long-term ambient concentrations of fine particulates less than 2.5 microns in aerodynamic diameter (PM2.5) and other air pollutants. Journal of Exposure Analysis and Environmental Epidemiology, 1995, 5(2): 137–159
Pubmed
|
[33] |
Slaughter J C, Kim E, Sheppard L, Sullivan J H, Larson T V, Claiborn C. Association between particulate matter and emergency room visits, hospital admissions and mortality in Spokane, Washington. Journal of Exposure Analysis and Environmental Epidemiology, 2005, 15(2): 153–159
CrossRef
Pubmed
Google scholar
|
[34] |
Mar T F, Koenig J Q, Primomo J. Associations between asthma emergency visits and particulate matter sources, including diesel emissions from stationary generators in Tacoma, Washington. Inhalation Toxicology, 2010, 22(6): 445–448
CrossRef
Pubmed
Google scholar
|
[35] |
Glad J A, Brink L L, Talbott E O, Lee P C, Xu X, Saul M, Rager J. The relationship of ambient ozone and PM2.5 levels and asthma emergency department visits: possible influence of gender and ethnicity. Archives of Environmental & Occupational Health, 2012, 67(2): 103–108
CrossRef
Pubmed
Google scholar
|
[36] |
Dockery D W, Cunningham J, Damokosh A I, Neas L M, Spengler J D, Koutrakis P, Ware J H, Raizenne M, Speizer F E. Health effects of acid aerosols on North American children: respiratory symptoms. Environmental Health Perspectives, 1996, 104(5): 500–505
CrossRef
Pubmed
Google scholar
|
[37] |
Ostro B, Lipsett M, Mann J, Braxton-Owens H, White M. Air pollution and exacerbation of asthma in African-American children in Los Angeles. Epidemiology (Cambridge, Mass), 2001, 12(2): 200–208
CrossRef
Pubmed
Google scholar
|
[38] |
Ostro B D, Rothschild S. Air pollution and acute respiratory morbidity: an observational study of multiple pollutants. Environmental Research, 1989, 50(2): 238–247
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |