Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for sorption/desorption of target ligands

Ryan C. SMITH , Jinze LI , Surapol PADUNGTHON , Arup K. SENGUPTA

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 929 -938.

PDF (1859KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 929 -938. DOI: 10.1007/s11783-015-0795-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for sorption/desorption of target ligands

Author information +
History +
PDF (1859KB)

Abstract

Metal oxide nanoparticles like hydrated ferric oxide (HFO) or hydrated zirconium oxide (HZrO) are excellent sorbents for environmentally significant ligands like phosphate, arsenic, or fluoride, present at trace concentrations. Since the sorption capacity is surface dependent for HFO and HZrO, nanoscale sizes offer significant enhancement in performance. However, due to their miniscule sizes, low attrition resistance, and poor durability they are unable to be used in typical plug-flow column setups. Meanwhile ion exchange resins, which have no specific affinity toward anionic ligands, are durable and chemically stable. By impregnating metal oxide nanoparticles inside a polymer support, with or without functional groups, a hybrid nanosorbent material (HNM) can be prepared. A HNM is durable, mechanically strong, and chemically stable. The functional groups of the polymeric support will affect the overall removal efficiency of the ligands exerted by the Donnan Membrane Effect. For example, the removal of arsenic by HFO or the removal of fluoride by HZrO is enhanced by using anion exchange resins. The HNM can be precisely tuned to remove one type of contaminant over another type. Also, the physical morphology of the support material, spherical bead versus ion exchange fiber, has a significant effect on kinetics of sorption and desorption. HNMs also possess dual sorption sites and are capable of removing multiple contaminants, namely, arsenate and perchlorate, concurrently.

Keywords

ion exchange / sorption / arsenic / perchlorate / fluoride

Cite this article

Download citation ▾
Ryan C. SMITH, Jinze LI, Surapol PADUNGTHON, Arup K. SENGUPTA. Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for sorption/desorption of target ligands. Front. Environ. Sci. Eng., 2015, 9(5): 929-938 DOI:10.1007/s11783-015-0795-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Trivedi PAxe L. Modeling Cd and Zn sorption to hydrous metal oxides. Environmental Science & Technology200034(11): 2215–2223

[2]

Trivedi PAxe L. Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides. Environmental Science & Technology200135(9): 1779–1784

[3]

Dixit SHering J G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science & Technology200337(18): 4182–4189

[4]

Dou XMohan DPittman C U Jr, Yang S. Remediating fluoride from water using hydrous zirconium oxide. Chemical Engineering Journal2012198−199: 236–245

[5]

Li ZDeng SZhang XZhou WHuang JYu G. Removal of fluoride from water using titanium-based adsorbents. Frontiers of Environmental Science & Engineering in China20104(4): 414–420

[6]

Xu WWang JWang LSheng GLiu JYu HHuang X J. Enhanced arsenic removal from water by hierarchically porous CeO₂-ZrO₂ nanospheres: role of surface- and structure-dependent properties. Journal of Hazardous Materials2013260: 498–507

[7]

Zheng JChen K HYan XChen S JHu G CPeng X WYuan J GMai B XYang Z Y. Heavy metals in food, house dust, and water from an e-waste recycling area in South China and the potential risk to human health. Ecotoxicology and Environmental Safety201396: 205–212

[8]

Wongsasuluk PChotpantarat SSiriwong WRobson M. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental Geochemistry and Health201436(1): 169–182

[9]

Rahman M MNg J CNaidu R. Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environmental Geochemistry and Health200931(S1 Suppl 1): 189–200

[10]

Greer M AGoodman GPleus R CGreer S E. Health effects assessment for environmental perchlorate contamination: the dose response for inhibition of thyroidal radioiodine uptake in humans. Environmental Health Perspectives2002110(9): 927–937

[11]

Wambu E WAgong S GAnyango BAkuno WAkenga T. High fluoride water in Bondo-Rarieda area of Siaya County, Kenya: a hydro-geological implication on public health in the Lake Victoria Basin. BMC Public Health201414(1): 462–469

[12]

Jang MChen WCannon F S. Preloading hydrous ferric oxide into granular activated carbon for arsenic removal. Environmental Science & Technology200842(9): 3369–3374

[13]

Min J HHering J G. Arsenate sorption by Fe(III)-doped alginate gels. Water Research199832(5): 1544–1552

[14]

Zouboulis A IKatsoyiannis I A. Arsenic removal using iron oxide loaded alginate beads. Industrial & Engineering Chemistry Research200241(24): 6149–6155

[15]

Miller S MZimmerman J B. Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead. Water Research201044(19): 5722–5729

[16]

DeMarco M JSenGupta A KGreenleaf J E. Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Research200337(1): 164–176

[17]

Cumbal LSengupta A K. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of donnan membrane effect. Environmental Science & Technology200539(17): 6508–6515

[18]

Padungthon SLi JGerman MSenGupta A K. Hybrid anion exchanger with dispersed zirconium oxide nanoparticles: a durable and reusable fluoride-selective sorbent. Environmental Engineering Science201431(7): 360–372

[19]

Pan BQiu HPan BNie GXiao LLv LZhang WZhang QZheng S. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study. Water Research201044(3): 815–824

[20]

Zhang QPan BZhang WPan BZhang QRen H. Arsenate removal from aqueous media by nanosized hydrated ferric oxide (HFO)-loaded polymeric sorbents: effect of HFO loadings. Industrial & Engineering Chemistry Research200847(11): 3957–3962

[21]

Zhao DSenGupta A K. Selective removal and recovery of phosphate in a novel fixed-bed process. Water Science and Technology199633(10−11): 139–147

[22]

Puttamraju PSenGupta A K. Evidence of tunable on-off sorption behaviors of metal oxide nanoparticles: role of ion exchanger support. Industrial & Engineering Chemistry Research200645(22): 7737–7742

[23]

Smith R CSenGupta A K. Integrating tunable anion exchange with reverse osmosis for enhanced recovery during inland brackish water desalination. Environmental Science & Technology201549(9): 5637–5644

[24]

Greenleaf J ECumbal LStaina ISenGupta A K. Abiotic As(III) oxidation by hydrated Fe(III) oxide (HFO) microparticles in a plug flow columnar configuration. Process Safety and Environmental Protection200381(2): 87–98

[25]

Li PSenGupta A K. Sorption of hydrophobic ionizable organic compounds (HIOCs) onto polymeric ion exchangers. Reactive & Functional Polymers200460: 27–39

[26]

Sarkar SSenGupta A KPrakash P. The Donnan membrane principle: opportunities for sustainable engineered processes and materials. Environmental Science & Technology201044(4): 1161–1166

[27]

Donnan F G. Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. Journal of Membrane Science1995100(1): 45–55

[28]

Li PSenGupta A K. Intraparticle diffusion during selective ion exchange with a macroporous exchanger. Reactive & Functional Polymers200044(3): 273–287

[29]

Sarkar SBlaney L MGupta AGhosh DSenGupta A K. Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. Reactive & Functional Polymers200767(12): 1599–1611

[30]

SenGupta A KCumbal L H. Hybrid anion exchanger for selective removal of contaminating ligands from fluids and method of manufacture thereof. US Patent, 7 291 5782007−<month>11</month>−<day>6</day>

[31]

SenGupta A KPadungthon S. Hybrid anion exchanger impregnated with hydrated zirconium oxide for selective removal of contaminating ligand and methods of manufacture and use thereof. US Patent Application, 860 9842013−<month>10</month>−<day>17</day>

[32]

Tang YGuan XWang JGao NMcPhail M RChusuei C C. Fluoride adsorption onto granular ferric hydroxide: effects of ionic strength, pH, surface loading, and major co-existing anions. Journal of Hazardous Materials2009171(1−<?Pub Caret?>3): 774–779

[33]

American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 18th Edition. Washington, DC: American Public Health Association, 1992

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1859KB)

3658

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/