Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes

Shubo DENG, Yue BEI, Xinyu LU, Ziwen DU, Bin WANG, Yujue WANG, Jun HUANG, Gang YU

PDF(643 KB)
PDF(643 KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 784-792. DOI: 10.1007/s11783-015-0790-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes

Author information +
History +

Abstract

Co-existing organic compounds may affect the adsorption of perfluorinated compounds (PFCs) and carbon nanotubes in aquatic environments. Adsorption of perfluorooctane sulfonate (PFOS), perfluorooctane acid (PFOA), perfluorobutane sulfonate (PFBS), and perfluorohexane sulfonate (PFHxS) on the pristine multi-walled carbon nanotubes (MWCNTs-Pri), carboxyl functionalized MWCNTs (MWCTNs-COOH), and hydroxyl functionalized MWCNTs (MWCNTs-OH) in the presence of humic acid, 1-naphthol, phenol, and benzoic acid was studied. Adsorption kinetics of PFOS was described well by the pseudo-second-order model and the sorption equilibrium was almost reached within 24 h. The effect of co-existing organic compounds on PFOS adsorption followed the decreasing order of humic acid>1-naphthol>benzoic acid>phenol. Adsorbed amounts of PFOS decreased significantly in the presence of co-existing or preloaded humic acid, and both adsorption energy and effective adsorption sites on the three MWCNTs decreased, resulting in the decrease of PFOS adsorption. With increasing pH, PFOS removal by three MWCNTs decreased in the presence of humic acid and phenol. The adsorbed amounts of different PFCs on the MWCNTs increased in the order of PFBS<PFHxS<PFOA<PFOS. The increase of both initial concentrations and the number of aromatic rings of co-existing organic compounds suppressed PFOS adsorption on the MWCNTs.

Keywords

perfluorinated compounds / carbon nanotubes / competitive adsorption / humic acid / perfluorooctane sulfonate (PFOS)

Cite this article

Download citation ▾
Shubo DENG, Yue BEI, Xinyu LU, Ziwen DU, Bin WANG, Yujue WANG, Jun HUANG, Gang YU. Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes. Front. Environ. Sci. Eng., 2015, 9(5): 784‒792 https://doi.org/10.1007/s11783-015-0790-1

References

[1]
Paul A G, Jones K C, Sweetman A J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environmental Science & Technology, 2009, 43(2): 386–392
CrossRef Pubmed Google scholar
[2]
Zareitalabad P, Siemens J, Hamer M, Amelung W. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater—A review on concentrations and distribution coefficients. Chemosphere, 2013, 91(6): 725–732
CrossRef Pubmed Google scholar
[3]
Liu C, Chang V W, Gin K Y. Environmental toxicity of PFCs: an enhanced integrated biomarker assessment and structure-activity analysis. Environmental Toxicology and Chemistry, 2013, 32(10): 2226–2233
CrossRef Pubmed Google scholar
[4]
So M K, Taniyasu S, Yamashita N, Giesy J P, Zheng J, Fang Z, Im S H, Lam P K. Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environmental Science & Technology, 2004, 38(15): 4056–4063
CrossRef Pubmed Google scholar
[5]
Skutlarek D, Exner M, Farber H. Perfluorinated surfactants in surface and drinking waters. Environmental Science and Pollution Research International, 2006, 13(5): 299–307
CrossRef Pubmed Google scholar
[6]
Jin Y H, Liu W, Sato I, Nakayama S F, Sasaki K, Saito N, Tsuda S. PFOS and PFOA in environmental and tap water in China. Chemosphere, 2009, 77(5): 605–611
CrossRef Pubmed Google scholar
[7]
Moody C A, Martin J W, Kwan W C, Muir D C G, Mabury S A. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek. Environmental Science & Technology, 2002, 36(4): 545–551
CrossRef Pubmed Google scholar
[8]
Zhou Q, Pan G, Shen W. Enhanced sorption of perfluorooctane sulfonate and Cr(VI) on organo montmorillonite: influence of solution pH and uptake mechanism. Adsorption, 2013, 19(2−4): 709–715
CrossRef Google scholar
[9]
Chen X, Xia X, Wang X, Qiao J, Chen H. A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere, 2011, 83(10): 1313–1319
CrossRef Pubmed Google scholar
[10]
Pan G, Jia C, Zhao D, You C, Chen H, Jiang G. Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments. Environmental Pollution, 2009, 157(1): 325–330
CrossRef Pubmed Google scholar
[11]
Du Z, Deng S, Bei Y, Huang Q, Wang B, Huang J, Yu G. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review. Journal of Hazardous Materials, 2014, 274: 443–454
CrossRef Pubmed Google scholar
[12]
Mota L C, Ureña-Benavides E E, Yoon Y, Son A. Quantitative detection of single walled carbon nanotube in water using DNA and magnetic fluorescent spheres. Environmental Science & Technology, 2013, 47(1): 493–501
CrossRef Pubmed Google scholar
[13]
Liu H H, Cohen Y. Multimedia environmental distribution of engineered nanomaterials. Environmental Science & Technology, 2014, 48(6): 3281–3292
CrossRef Pubmed Google scholar
[14]
Chen W, Duan L, Zhu D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science & Technology, 2007, 41(24): 8295–8300
CrossRef Pubmed Google scholar
[15]
Zhao J, Wang Z, Mashayekhi H, Mayer P, Chefetz B, Xing B. Pulmonary surfactant suppressed phenanthrene adsorption on carbon nanotubes through solubilization and competition as examined by passive dosing technique. Environmental Science & Technology, 2012, 46(10): 5369–5377
CrossRef Pubmed Google scholar
[16]
Wang X L, Liu Y, Tao S, Xing B S. Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes. Carbon, 2010, 48(13): 3721–3728
CrossRef Google scholar
[17]
Yang K, Xing B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical Reviews, 2010, 110(10): 5989–6008
CrossRef Pubmed Google scholar
[18]
Zhou Y, Wen B, Pei Z, Chen G, Lv J, Fang J, Shan X, Zhang S. Coadsorption of copper and perfluorooctane sulfonate onto multi-walled carbon nanotubes. Chemical Engineering Journal, 2012, 203: 148–157
CrossRef Google scholar
[19]
Kwadijk C J A F, Velzeboer I, Koelmans A A. Sorption of perfluorooctane sulfonate to carbon nanotubes in aquatic sediments. Chemosphere, 2013, 90(5): 1631–1636
CrossRef Pubmed Google scholar
[20]
Li X, Chen S, Quan X, Zhang Y. Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance. Environmental Science & Technology, 2011, 45(19): 8498–8505
CrossRef Pubmed Google scholar
[21]
Li X, Pignatello J J, Wang Y, Xing B. New insight into adsorption mechanism of ionizable compounds on carbon nanotubes. Environmental Science & Technology, 2013, 47(15): 8334–8341
Pubmed
[22]
Deng S, Zhang Q, Nie Y, Wei H, Wang B, Huang J, Yu G, Xing B. Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environmental Pollution, 2012, 168: 138–144
CrossRef Pubmed Google scholar
[23]
Bei Y, Deng S, Du Z, Wang B, Huang J, Yu G. Adsorption of perfluorooctane sulfonate on carbon nanotubes: influence of pH and competitive ions. Water Science and Technology, 2014, 69(7): 1489–1495
CrossRef Pubmed Google scholar
[24]
Meng P, Deng S, Lu X, Du Z, Wang B, Huang J, Wang Y, Yu G, Xing B. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents. Environmental Science & Technology, 2014, 48(23): 13785–13792
CrossRef Pubmed Google scholar
[25]
Ho Y S, Mckay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451–465
CrossRef Google scholar
[26]
Kissa E. Fluorinated Surfactants and Repellents. New York: CRC Press, 2001
[27]
Li Y H, Di Z, Ding J, Wu D, Luan Z, Zhu Y. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research, 2005, 39(4): 605–609
CrossRef Pubmed Google scholar
[28]
Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 2008, 42(24): 9005–9013
CrossRef Pubmed Google scholar
[29]
Carter M C, Kilduff J E, Weber W J. Site energy distribution analysis of preloaded adsorbents. Environmental Science & Technology, 1995, 29(7): 1773–1780
CrossRef Pubmed Google scholar
[30]
Wang F, Shih K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations. Water Research, 2011, 45(9): 2925–2930
CrossRef Pubmed Google scholar
[31]
Yu Q, Zhang R, Deng S, Huang J, Yu G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study. Water Research, 2009, 43(4): 1150–1158
CrossRef Pubmed Google scholar
[32]
Zhang Q, Deng S, Yu G, Huang J. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: sorption kinetics and uptake mechanism. Bioresource Technology, 2011, 102(3): 2265–2271
CrossRef Pubmed Google scholar
[33]
Yu Q, Deng S, Yu G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Research, 2008, 42(12): 3089–3097
CrossRef Pubmed Google scholar
[34]
Lin D, Xing B. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science & Technology, 2008, 42(19): 7254–7259
CrossRef Pubmed Google scholar
[35]
Chiou C T, Freed V H, Schmedding D W, Kohnert R L. Partition coefficient and bioaccumulation of selected organic chemicals. Environmental Science & Technology, 1977, 11(5): 475–478
CrossRef Google scholar

Acknowledgements

We thank the National Nature Science Foundation of China (Grant No. 21177070), Tsinghua University Initiative Scientific Research Program (Nos. 20141081174 and 20131089251), and Collaborative Innovation Center for Regional Environmental Quality for financial support.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(643 KB)

Accesses

Citations

Detail

Sections
Recommended

/