Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes

Shubo DENG , Yue BEI , Xinyu LU , Ziwen DU , Bin WANG , Yujue WANG , Jun HUANG , Gang YU

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 784 -792.

PDF (643KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 784 -792. DOI: 10.1007/s11783-015-0790-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes

Author information +
History +
PDF (643KB)

Abstract

Co-existing organic compounds may affect the adsorption of perfluorinated compounds (PFCs) and carbon nanotubes in aquatic environments. Adsorption of perfluorooctane sulfonate (PFOS), perfluorooctane acid (PFOA), perfluorobutane sulfonate (PFBS), and perfluorohexane sulfonate (PFHxS) on the pristine multi-walled carbon nanotubes (MWCNTs-Pri), carboxyl functionalized MWCNTs (MWCTNs-COOH), and hydroxyl functionalized MWCNTs (MWCNTs-OH) in the presence of humic acid, 1-naphthol, phenol, and benzoic acid was studied. Adsorption kinetics of PFOS was described well by the pseudo-second-order model and the sorption equilibrium was almost reached within 24 h. The effect of co-existing organic compounds on PFOS adsorption followed the decreasing order of humic acid>1-naphthol>benzoic acid>phenol. Adsorbed amounts of PFOS decreased significantly in the presence of co-existing or preloaded humic acid, and both adsorption energy and effective adsorption sites on the three MWCNTs decreased, resulting in the decrease of PFOS adsorption. With increasing pH, PFOS removal by three MWCNTs decreased in the presence of humic acid and phenol. The adsorbed amounts of different PFCs on the MWCNTs increased in the order of PFBS<PFHxS<PFOA<PFOS. The increase of both initial concentrations and the number of aromatic rings of co-existing organic compounds suppressed PFOS adsorption on the MWCNTs.

Keywords

perfluorinated compounds / carbon nanotubes / competitive adsorption / humic acid / perfluorooctane sulfonate (PFOS)

Cite this article

Download citation ▾
Shubo DENG, Yue BEI, Xinyu LU, Ziwen DU, Bin WANG, Yujue WANG, Jun HUANG, Gang YU. Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes. Front. Environ. Sci. Eng., 2015, 9(5): 784-792 DOI:10.1007/s11783-015-0790-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Paul A GJones K CSweetman A J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environmental Science & Technology200943(2): 386–392

[2]

Zareitalabad PSiemens JHamer MAmelung W. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater—A review on concentrations and distribution coefficients. Chemosphere201391(6): 725–732

[3]

Liu CChang V WGin K Y. Environmental toxicity of PFCs: an enhanced integrated biomarker assessment and structure-activity analysis. Environmental Toxicology and Chemistry201332(10): 2226–2233

[4]

So M KTaniyasu SYamashita NGiesy J PZheng JFang ZIm S HLam P K. Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environmental Science & Technology200438(15): 4056–4063

[5]

Skutlarek DExner MFarber H. Perfluorinated surfactants in surface and drinking waters. Environmental Science and Pollution Research International200613(5): 299–307

[6]

Jin Y HLiu WSato INakayama S FSasaki KSaito NTsuda S. PFOS and PFOA in environmental and tap water in China. Chemosphere200977(5): 605–611

[7]

Moody C AMartin J WKwan W CMuir D C GMabury S A. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek. Environmental Science & Technology200236(4): 545–551

[8]

Zhou QPan GShen W. Enhanced sorption of perfluorooctane sulfonate and Cr(VI) on organo montmorillonite: influence of solution pH and uptake mechanism. Adsorption201319(2−4): 709–715

[9]

Chen XXia XWang XQiao JChen H. A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere201183(10): 1313–1319

[10]

Pan GJia CZhao DYou CChen HJiang G. Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments. Environmental Pollution2009157(1): 325–330

[11]

Du ZDeng SBei YHuang QWang BHuang JYu G. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review. Journal of Hazardous Materials2014274: 443–454

[12]

Mota L CUreña-Benavides E EYoon YSon A. Quantitative detection of single walled carbon nanotube in water using DNA and magnetic fluorescent spheres. Environmental Science & Technology201347(1): 493–501

[13]

Liu H HCohen Y. Multimedia environmental distribution of engineered nanomaterials. Environmental Science & Technology201448(6): 3281–3292

[14]

Chen WDuan LZhu D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science & Technology200741(24): 8295–8300

[15]

Zhao JWang ZMashayekhi HMayer PChefetz BXing B. Pulmonary surfactant suppressed phenanthrene adsorption on carbon nanotubes through solubilization and competition as examined by passive dosing technique. Environmental Science & Technology201246(10): 5369–5377

[16]

Wang X LLiu YTao SXing B S. Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes. Carbon201048(13): 3721–3728

[17]

Yang KXing B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical Reviews2010110(10): 5989–6008

[18]

Zhou YWen BPei ZChen GLv JFang JShan XZhang S. Coadsorption of copper and perfluorooctane sulfonate onto multi-walled carbon nanotubes. Chemical Engineering Journal2012203: 148–157

[19]

Kwadijk C J A FVelzeboer IKoelmans A A. Sorption of perfluorooctane sulfonate to carbon nanotubes in aquatic sediments. Chemosphere201390(5): 1631–1636

[20]

Li XChen SQuan XZhang Y. Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance. Environmental Science & Technology201145(19): 8498–8505

[21]

Li XPignatello J JWang YXing B. New insight into adsorption mechanism of ionizable compounds on carbon nanotubes. Environmental Science & Technology201347(15): 8334–8341

[22]

Deng SZhang QNie YWei HWang BHuang JYu GXing B. Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environmental Pollution2012168: 138–144

[23]

Bei YDeng SDu ZWang BHuang JYu G. Adsorption of perfluorooctane sulfonate on carbon nanotubes: influence of pH and competitive ions. Water Science and Technology201469(7): 1489–1495

[24]

Meng PDeng SLu XDu ZWang BHuang JWang YYu GXing B. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents. Environmental Science & Technology201448(23): 13785–13792

[25]

Ho Y SMckay G. Pseudo-second order model for sorption processes. Process Biochemistry199934(5): 451–465

[26]

Kissa E. Fluorinated Surfactants and Repellents. New York: CRC Press, 2001

[27]

Li Y HDi ZDing JWu DLuan ZZhu Y. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research200539(4): 605–609

[28]

Pan BXing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology200842(24): 9005–9013

[29]

Carter M CKilduff J EWeber W J. Site energy distribution analysis of preloaded adsorbents. Environmental Science & Technology199529(7): 1773–1780

[30]

Wang FShih K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations. Water Research201145(9): 2925–2930

[31]

Yu QZhang RDeng SHuang JYu G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study. Water Research200943(4): 1150–1158

[32]

Zhang QDeng SYu GHuang J. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: sorption kinetics and uptake mechanism. Bioresource Technology2011102(3): 2265–2271

[33]

Yu QDeng SYu G. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Research200842(12): 3089–3097

[34]

Lin DXing B. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science & Technology200842(19): 7254–7259

[35]

Chiou C TFreed V HSchmedding D WKohnert R L. Partition coefficient and bioaccumulation of selected organic chemicals. Environmental Science & Technology197711(5): 475–478

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (643KB)

3022

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/