Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms

Zhaoyi SHEN , Zhuo CHEN , Zhen HOU , Tingting LI , Xiaoxia LU

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 912 -918.

PDF (364KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 912 -918. DOI: 10.1007/s11783-015-0789-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms

Author information +
History +
PDF (364KB)

Abstract

The widespread production and use of zinc oxide nanoparticles (ZnO-NPs) in recent years have posed potential threat to the ecosystem. This study aimed to investigate the ecotoxicological effect of ZnO-NPs on soil microorganisms using laboratory microcosm test. Respiration, ammonification, dehydrogenase (DH) activity, and fluorescent diacetate hydrolase (FDAH) activity were used as ecotoxicological parameters. The results showed that in the neutral soil treated with 1 mg ZnO-NPs per g soil (fresh, neutral), ammonification was significantly inhibited during the study period of three months, but the inhibition rate decreased over increasing time. Inhibition in respiration was observed in the first month of the test. In various ZnO-NPs treatments (1 mg, 5 mg, and 10 mg ZnO-NPs per g soil), DH activity and FDAH activity were inhibited during the study period of one month. For both enzyme activities, there were positive dose–response relationships between the concentration of ZnO-NPs and the inhibition rates, but the curves changed over time due to changes of ZnO-NPs toxicity. Soil type affected the toxicity of ZnO-NPs in soil. The toxicity was highest in the acid soil, followed by the neutral soil. The toxicity was relatively low in the alkaline soil. The toxicity was not accounted for by the Zn2+ released from the ZnO-NPs. Direct interaction of ZnO-NPs with biologic targets might be one of the reasons. The adverse effect of ZnO-NPs on soil microorganisms in neutral and acid soils is worthy of attention.

Keywords

zinc oxide nanoparticles (ZnO-NPs) / soil microorganisms / respiration / ammonification / dehydrogenase (DH) activity / fluorescent diacetate hydrolase (FDAH) activity

Cite this article

Download citation ▾
Zhaoyi SHEN, Zhuo CHEN, Zhen HOU, Tingting LI, Xiaoxia LU. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front. Environ. Sci. Eng., 2015, 9(5): 912-918 DOI:10.1007/s11783-015-0789-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li J HLiu X RZhang YTian F FZhao G YYu Q L YJiang F LLiu Y. Toxicity of nano zinc oxide to mitochondria. Toxicological Reviews20121(2): 137–144

[2]

Borm PKlaessig F CLandry T DMoudgil BPauluhn JThomas KTrottier RWood S. Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicological Sciences200690(1): 23–32

[3]

Boxall AChaudhry QSinclair CJones AAitken RJefferson BWatts C. Current and Future Predicted Environmental Exposure to Engineered Nanoparticles. Central Science Laboratory, York, UK2007

[4]

Applerot GLipovsky ADror RPerkas NNitzan YLubart RGedanken A. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Advanced Functional Materials200919(6): 842–852

[5]

Jin TSun DSu J YZhang HSue H J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. Journal of Food Science200974(1): M46–M52

[6]

Liu YHe LMustapha ALi HHu Z QLin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology2009107(4): 1193–1201

[7]

Xie YHe YIrwin P LJin TShi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuniApplied and Environmental Microbiology201177(7): 2325–2331

[8]

Adams L KLyon D YAlvarez P J J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research200640(19): 3527–3532

[9]

Gajjar PPettee BBritt D WHuang WJohnson W PAnderson A J. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. Journal of Biological Engineering20093(1): 9

[10]

Jones NRay BRanjit K TManna A C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters2008279(1): 71–76

[11]

Wu BWang YLee Y HHorst AWang ZChen D RSureshkumar RTang Y J. Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environmental Science & Technology201044(4): 1484–1489

[12]

Ma HWilliams P LDiamond S A. Ecotoxicity of manufactured ZnO nanoparticles—a review. Environmental Pollution2013172: 76–85

[13]

Li MZhu LLin D. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environmental Science & Technology201145(5): 1977–1983

[14]

Collins DLuxton TKumar NShah SWalker V KShah V. Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS ONE20127(8): e42663

[15]

Du WSun YJi RZhu JWu JGuo H. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring201113(4): 822–828

[16]

Ge YSchimel J PHolden P A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science & Technology201145(4): 1659–1664

[17]

Rousk JAckermann KCurling S FJones D L. Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS ONE20127(3): e34197

[18]

Li Z GLuo Y MTeng Y. Research Methods on Soil and Environmental Microorganisms. Beijing: Science Press, 2008

[19]

Hund-Rinke KSchlich KKlawonn T. Influence of application techniques on the ecotoxicological effects of nanomaterials in soil. Environmental Science Europe201224(1): 30

[20]

Hund-Rinke KSimon M. Bioavailability assessment of contaminants in soils via respiration and nitrification tests. Environmental Pollution2008153(2): 468–475

[21]

Waalewijn-Kool P LDiez Ortiz Mvan Straalen N Mvan Gestel C A M. Sorption, dissolution and pH determine the long-term equilibration and toxicity of coated and uncoated ZnO nanoparticles in soil. Environmental Pollution2013178: 59–64

[22]

Voegelin APfister SScheinost A CMarcus M AKretzschmar R. Changes in zinc speciation in field soil after contamination with zinc oxide. Environmental Science & Technology200539(17): 6616–6623

[23]

Dick R P. Soil enzyme activities as integrative indicators of soil health. In: Pankhurst C EDoube B MGupta V V S R, eds. Biological Indicators of Soil Health CAB International, New York1997

[24]

Shin Y JKwak J IAn Y J. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere201288(4): 524–529

[25]

Kool P LOrtiz M Dvan Gestel C A M. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environmental Pollution2011159(10): 2713–2719

[26]

Scheckel K GLuxton T PEl Badawy A MImpellitteri C ATolaymat T M. Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension. Environmental Science & Technology201044(4): 1307–1312

[27]

Crout N M JTye A MZhang HMcGrath S PYoung S D. Kinetics of metal fixation in soils: measurement and modeling by isotopic dilution. Environmental Toxicology and Chemistry200625(3): 659–663

[28]

Voegelin APfister SScheinost A CMarcus M AKretzschmar R. Changes in zinc speciation in field soil after contamination with zinc oxide. Environmental Science & Technology200539(17): 6616–6623

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (364KB)

Supplementary files

FSE-15016-OF-SZY_suppl_1

3638

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/