Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms

Zhaoyi SHEN, Zhuo CHEN, Zhen HOU, Tingting LI, Xiaoxia LU

PDF(364 KB)
PDF(364 KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 912-918. DOI: 10.1007/s11783-015-0789-7
RESEARCH ARTICLE

Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms

Author information +
History +

Abstract

The widespread production and use of zinc oxide nanoparticles (ZnO-NPs) in recent years have posed potential threat to the ecosystem. This study aimed to investigate the ecotoxicological effect of ZnO-NPs on soil microorganisms using laboratory microcosm test. Respiration, ammonification, dehydrogenase (DH) activity, and fluorescent diacetate hydrolase (FDAH) activity were used as ecotoxicological parameters. The results showed that in the neutral soil treated with 1 mg ZnO-NPs per g soil (fresh, neutral), ammonification was significantly inhibited during the study period of three months, but the inhibition rate decreased over increasing time. Inhibition in respiration was observed in the first month of the test. In various ZnO-NPs treatments (1 mg, 5 mg, and 10 mg ZnO-NPs per g soil), DH activity and FDAH activity were inhibited during the study period of one month. For both enzyme activities, there were positive dose–response relationships between the concentration of ZnO-NPs and the inhibition rates, but the curves changed over time due to changes of ZnO-NPs toxicity. Soil type affected the toxicity of ZnO-NPs in soil. The toxicity was highest in the acid soil, followed by the neutral soil. The toxicity was relatively low in the alkaline soil. The toxicity was not accounted for by the Zn2+ released from the ZnO-NPs. Direct interaction of ZnO-NPs with biologic targets might be one of the reasons. The adverse effect of ZnO-NPs on soil microorganisms in neutral and acid soils is worthy of attention.

Keywords

zinc oxide nanoparticles (ZnO-NPs) / soil microorganisms / respiration / ammonification / dehydrogenase (DH) activity / fluorescent diacetate hydrolase (FDAH) activity

Cite this article

Download citation ▾
Zhaoyi SHEN, Zhuo CHEN, Zhen HOU, Tingting LI, Xiaoxia LU. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front. Environ. Sci. Eng., 2015, 9(5): 912‒918 https://doi.org/10.1007/s11783-015-0789-7

References

[1]
Li J H, Liu X R, Zhang Y, Tian F F, Zhao G Y, Yu Q L Y, Jiang F L, Liu Y. Toxicity of nano zinc oxide to mitochondria. Toxicological Reviews, 2012, 1(2): 137–144
[2]
Borm P, Klaessig F C, Landry T D, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S. Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicological Sciences, 2006, 90(1): 23–32
CrossRef Pubmed Google scholar
[3]
Boxall A, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C. Current and Future Predicted Environmental Exposure to Engineered Nanoparticles. Central Science Laboratory, York, UK, 2007
[4]
Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Advanced Functional Materials, 2009, 19(6): 842–852
CrossRef Google scholar
[5]
Jin T, Sun D, Su J Y, Zhang H, Sue H J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. Journal of Food Science, 2009, 74(1): M46–M52
CrossRef Pubmed Google scholar
[6]
Liu Y, He L, Mustapha A, Li H, Hu Z Q, Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology, 2009, 107(4): 1193–1201
CrossRef Pubmed Google scholar
[7]
Xie Y, He Y, Irwin P L, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology, 2011, 77(7): 2325–2331
CrossRef Pubmed Google scholar
[8]
Adams L K, Lyon D Y, Alvarez P J J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 2006, 40(19): 3527–3532
CrossRef Pubmed Google scholar
[9]
Gajjar P, Pettee B, Britt D W, Huang W, Johnson W P, Anderson A J. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. Journal of Biological Engineering, 2009, 3(1): 9
CrossRef Pubmed Google scholar
[10]
Jones N, Ray B, Ranjit K T, Manna A C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 2008, 279(1): 71–76
CrossRef Pubmed Google scholar
[11]
Wu B, Wang Y, Lee Y H, Horst A, Wang Z, Chen D R, Sureshkumar R, Tang Y J. Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. Environmental Science & Technology, 2010, 44(4): 1484–1489
CrossRef Pubmed Google scholar
[12]
Ma H, Williams P L, Diamond S A. Ecotoxicity of manufactured ZnO nanoparticles—a review. Environmental Pollution, 2013, 172: 76–85
CrossRef Pubmed Google scholar
[13]
Li M, Zhu L, Lin D. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environmental Science & Technology, 2011, 45(5): 1977–1983
CrossRef Pubmed Google scholar
[14]
Collins D, Luxton T, Kumar N, Shah S, Walker V K, Shah V. Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS ONE, 2012, 7(8): e42663
CrossRef Pubmed Google scholar
[15]
Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 2011, 13(4): 822–828
CrossRef Pubmed Google scholar
[16]
Ge Y, Schimel J P, Holden P A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science & Technology, 2011, 45(4): 1659–1664
CrossRef Pubmed Google scholar
[17]
Rousk J, Ackermann K, Curling S F, Jones D L. Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS ONE, 2012, 7(3): e34197
CrossRef Pubmed Google scholar
[18]
Li Z G, Luo Y M, Teng Y. Research Methods on Soil and Environmental Microorganisms. Beijing: Science Press, 2008
[19]
Hund-Rinke K, Schlich K, Klawonn T. Influence of application techniques on the ecotoxicological effects of nanomaterials in soil. Environmental Science Europe, 2012, 24(1): 30
CrossRef Google scholar
[20]
Hund-Rinke K, Simon M. Bioavailability assessment of contaminants in soils via respiration and nitrification tests. Environmental Pollution, 2008, 153(2): 468–475
CrossRef Pubmed Google scholar
[21]
Waalewijn-Kool P L, Diez Ortiz M, van Straalen N M, van Gestel C A M. Sorption, dissolution and pH determine the long-term equilibration and toxicity of coated and uncoated ZnO nanoparticles in soil. Environmental Pollution, 2013, 178: 59–64
CrossRef Pubmed Google scholar
[22]
Voegelin A, Pfister S, Scheinost A C, Marcus M A, Kretzschmar R. Changes in zinc speciation in field soil after contamination with zinc oxide. Environmental Science & Technology, 2005, 39(17): 6616–6623
CrossRef Pubmed Google scholar
[23]
Dick R P. Soil enzyme activities as integrative indicators of soil health. In: Pankhurst C E, Doube B M, Gupta V V S R, eds. Biological Indicators of Soil Health CAB International, New York, 1997
[24]
Shin Y J, Kwak J I, An Y J. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere, 2012, 88(4): 524–529
CrossRef Pubmed Google scholar
[25]
Kool P L, Ortiz M D, van Gestel C A M. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environmental Pollution, 2011, 159(10): 2713–2719
CrossRef Pubmed Google scholar
[26]
Scheckel K G, Luxton T P, El Badawy A M, Impellitteri C A, Tolaymat T M. Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension. Environmental Science & Technology, 2010, 44(4): 1307–1312
CrossRef Pubmed Google scholar
[27]
Crout N M J, Tye A M, Zhang H, McGrath S P, Young S D. Kinetics of metal fixation in soils: measurement and modeling by isotopic dilution. Environmental Toxicology and Chemistry, 2006, 25(3): 659–663
CrossRef Pubmed Google scholar
[28]
Voegelin A, Pfister S, Scheinost A C, Marcus M A, Kretzschmar R. Changes in zinc speciation in field soil after contamination with zinc oxide. Environmental Science & Technology, 2005, 39(17): 6616–6623
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41071311, 41030529 and 41471391), Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-10-0200) and YKM Entrepreneurship Education Foundation.
is available in the online version of this article at http://dx.doi.org/10.1007/s11783-015-0789-7 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(364 KB)

Accesses

Citations

Detail

Sections
Recommended

/