Interaction of carbonaceous nanomaterials with wastewater biomass

Yu YANG , Zhicheng YU , Takayuki NOSAKA , Kyle DOUDRICK , Kiril HRISTOVSKI , Pierre HERCKES , Paul WESTERHOFF

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 823 -831.

PDF (640KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 823 -831. DOI: 10.1007/s11783-015-0787-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Interaction of carbonaceous nanomaterials with wastewater biomass

Author information +
History +
PDF (640KB)

Abstract

Increasing production and use of carbonaceous nanomaterials (NMs) will increase their release to the sewer system and to municipal wastewater treatment plants. There is little quantitative knowledge on the removal of multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), or few-layer graphene (FLG) from wastewater into the wastewater biomass. As such, we investigated the quantification of GO and MWCNTs by UV-Vis spectrophotometry, and FLG using programmable thermal analysis (PTA), respectively. We further explored the removal of pristine and oxidized MWCNTs (O-MWCNTs), GO, and FLG in a biomass suspension. At least 96% of pristine and O-MWCNTs were removed from the water phase through aggregation and 30-min settling in presence or absence of biomass with an initial MWCNT concentration of 25 mg·L−1. Only 65% of GO was removed with biomass concentration at or above 1,000 mg·L−1 as total suspended solids (TSS) with the initial GO concentration of 25 mg·L−1. As UV-Vis spectrophotometry does not work well on quantification of FLG, we studied the removal of FLG at a lower biomass concentration (50 mg TSS·L−1) using PTA, which showed a 16% removal of FLG with an initial concentration of 1 mg·L−1. The removal data for GO and FLG were fitted using the Freundlich equation (R2 = 0.55, 0.94, respectively). The data presented in this study for carbonaceous NM removal from wastewater provides quantitative information for environmental exposure modeling and life cycle assessment.

Keywords

multi-walled carbon nanotubes / graphene oxide / graphene / removal / wastewater biomass

Cite this article

Download citation ▾
Yu YANG, Zhicheng YU, Takayuki NOSAKA, Kyle DOUDRICK, Kiril HRISTOVSKI, Pierre HERCKES, Paul WESTERHOFF. Interaction of carbonaceous nanomaterials with wastewater biomass. Front. Environ. Sci. Eng., 2015, 9(5): 823-831 DOI:10.1007/s11783-015-0787-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

U.S.EPA. Comprehensive Environmental Assessment Applied to Multiwalled Carbon Nanotube Flame-Retardant Coatings in Upholstery Textiles: A Case Study Presenting Priority Research Gaps for Future Risk Assessments (Final Report). U.S. Environmental Protection Agency, Washington, D C 2013

[2]

Baur JSilverman E. Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bulletin200732(04): 328–334

[3]

Petersen E JZhang LMattison N TO’Carroll D MWhelton A JUddin NNguyen THuang QHenry T BHolbrook R DChen K L. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environmental Science & Technology201145(23): 9837–9856

[4]

Piccinno FGottschalk FSeeger SNowack B.Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 201214(9): 1–11

[5]

Hendren C OMesnard XDröge JWiesner M R. Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environmental Science & Technology201145(7): 2562–2569

[6]

Clark SMallick G G. Global graphene market (product type, application, geography)—size, share, global trends, company profiles, demand, insights, analysis, research, report, opportunities, segmentation and forecast, 2013−2020. Allied Market Research2014

[7]

Nowack BDavid R MFissan HMorris HShatkin J AStintz MZepp RBrouwer D. Potential release scenarios for carbon nanotubes used in composites. Environment International201359: 1–11

[8]

Mueller N CNowack B. Exposure modeling of engineered nanoparticles in the environment. Environmental Science & Technology200842(12): 4447–4453

[9]

Gottschalk FSonderer TScholz R WNowack B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environmental Science & Technology200943(24): 9216–9222

[10]

U.S.EPA. Interim Technical Guidance for Assessing Screening Level Environmental Fate and Transport of, and General Population, Consumer, and Environmental Exposure to Nanomaterials 2010Office of Pollution Prevention and Toxics (OPPT), U.S. Environmental Protection Agency, Washington, D C2011

[11]

Herrero-Latorre CÁlvarez-Méndez JBarciela-García JGarcía-Martín SPeña-Crecente R M. Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: a review. Analytica chimica acta2015853: 77–94

[12]

Plata D LReddy C MGschwend P M. Thermogravimetry-mass spectrometry for carbon nanotube detection in complex mixtures. Environmental Science & Technology201246(22): 12254–12261

[13]

Doudrick KHerckes PWesterhoff P. Detection of carbon nanotubes in environmental matrices using programmed thermal analysis. Environmental Science & Technology201246(22): 12246–12253

[14]

Doudrick KCorson NOberdörster GEder A CHerckes PHalden R UWesterhoff P. Extraction and quantification of carbon nanotubes in biological matrices with application to rat lung tissue. ACS Nano20137(10): 8849–8856

[15]

Doudrick KNosaka THerckes PWesterhoff P. Quantification of graphene and graphene oxide in complex organic matrices. Environmental Science: Nano20152: 60–67

[16]

Smith BWepasnick KSchrote K ECho H HBall W PFairbrother D H. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure-property relationship. Langmuir200925(17): 9767–9776

[17]

Yi PChen K L. Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes. Langmuir201127(7): 3588–3599

[18]

Cho H HSmith B AWnuk J DFairbrother D HBall W P. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes. Environmental Science & Technology200842(8): 2899–2905

[19]

Kiser M ARyu HJang HHristovski KWesterhoff P. Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Research201044(14): 4105–4114

[20]

APHA. AWWA, WEF. Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), 2005

[21]

Grady J L C PDaigger G TLim H C. Biological Wastewater Treatment. 2nd ed. Revised and Expanded ed. Florida: CRC Press, 1999

[22]

Shin H JKim K KBenayad AYoon S MPark H KJung I SJin M HJeong H KKim J MChoi J YLee Y H. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials200919(12): 1987–1992

[23]

Zhang JYang HShen GCheng PZhang JGuo S. Reduction of graphene oxide via L-ascorbic acid. Chemical Communications201046(7): 1112–1114

[24]

Saleh N BPfefferle L DElimelech M. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environmental Science & Technology200842(21): 7963–7969

[25]

Suzuki KTanaka YOsada TWaki M. Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration. Water Research200236(12): 2991–2998

[26]

Wiesner M RBottero J Y. A risk forecasting process for nanostructured materials, and nanomanufacturing. Comptes Rendus Physique201112(7): 659–668 (in German)

[27]

Westerhoff PNowack B. Searching for global descriptors of engineered nanomaterial fate and transport in the environment. Accounts of Chemical Research201346(3): 844–853

[28]

Yang YChen QWall J DHu Z. Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Research201246(4): 1176–1184

[29]

Neidhardt F C. Escherichia coli and Salmonella: Cellular and Molecular Biology. Washington, D C: ASM Press, 1996

[30]

Yang S TChang YWang HLiu GChen SWang YLiu YCao A. Folding/aggregation of graphene oxide and its application in Cu2+ removal. Journal of Colloid and Interface Science2010351(1): 122–127

[31]

He HKlinowski JForster MLerf A. A new structural model for graphite oxide. Chemical Physics Letters1998287(1−2): 53–56

[32]

Wang YWesterhoff PHristovski K D. Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. Journal of Hazardous Materials2012201−202(0): 16–22

[33]

Keller A ALazareva A. Predicted releases of engineered nanomaterials: from global to regional to local. Environmental Science & Technology Letters20141(1): 65–70

[34]

Chen K LElimelech M. Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environmental Science & Technology200943(19): 7270–7276

[35]

Becker W CFoundation A R. Using Oxidants to Enhance Filter Performance. AWWA Research Foundation and American Water Works Association2004

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (640KB)

2537

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/