Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars

Jianguo LIU , Hui CAI , Congcong MEI , Mingxin WANG

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 905 -911.

PDF (409KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 905 -911. DOI: 10.1007/s11783-015-0786-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars

Author information +
History +
PDF (409KB)

Abstract

The current study investigated the effects of nano-silicon (Si) and common Si on lead (Pb) toxicity, uptake, translocation, and accumulation in the rice cultivars Yangdao 6 and Yu 44 grown in soil containing two different Pb levels (500 mg·kg−1 and 1000 mg·kg−1). The results showed that Si application alleviated the toxic effects of Pb on rice growth. Under soil Pb treatments of 500 and 1000 mg·kg−1, the biomasses of plants supplied with common Si and nano-Si were 1.8%–5.2% and 3.3%–11.8% higher, respectively, than those of plants with no Si supply (control). Compared to the control, Pb concentrations in rice shoots supplied with common Si and nano-Si were reduced by 14.3%–31.4% and 27.6%–54.0%, respectively. Pb concentrations in rice grains treated with common Si and nano-Si decreased by 21.3%–40.9% and 38.6%–64.8%, respectively. Pb translocation factors (TFs) from roots to shoots decreased by 15.0%–29.3% and 25.6%–50.8%, respectively. The TFs from shoots to grains reduced by 8.3%–13.7% and 15.3%–21.1%, respectively, after Si application. The magnitudes of the effects observed on plants decreased in the following order: nano-Si treatment>common Si treatment and high-grain-Pb-accumulating cultivar (Yangdao 6)>low-grain-Pb-accumulating cultivar (Yu 44) and heavy Pb stress (1000 mg·kg−1)>moderate Pb stress (500 mg·kg−1)>no Pb treatment. The results of the study indicate that nano-Si is more efficient than common Si in ameliorating the toxic effects of Pb on rice growth, preventing Pb transfer from rice roots to aboveground parts, and blocking Pb accumulation in rice grains, especially in high-Pb-accumulating rice cultivars and in heavily Pb-polluted soils.

Keywords

silicon (Si) / lead (Pb) / rice (Oryza sativa L.) / toxicity / accumulation

Cite this article

Download citation ▾
Jianguo LIU, Hui CAI, Congcong MEI, Mingxin WANG. Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Front. Environ. Sci. Eng., 2015, 9(5): 905-911 DOI:10.1007/s11783-015-0786-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yadav S K. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany201076(2): 167–179

[2]

Duong T T TLee B K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management201192(3): 554–562

[3]

Yang Q WShu W SQiu J WWang H BLan C Y. Lead in paddy soils and rice plants and its potential health risk around Lechang lead/zinc mine, Guangdong, China. Environment International200430(7): 883–889

[4]

Wei BYang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal201094(2): 99–107

[5]

Silbergeld E KWaalkes MRice J M. Lead as a carcinogen: experimental evidence and mechanisms of action. American Journal of Industrial Medicine200038(3): 316–323

[6]

Zhuang PMcBride M BXia HLi NLi Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment2009407(5): 1551–1561

[7]

Gong H JRandall D PFlowers T J. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant, Cell & Environment200629(10): 1970–1979

[8]

Shetty RJensen BShetty N PHansen MHansen C WStarkey K RJørgensen H J L. Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosaPlant Pathology201261(1): 120–131

[9]

Mateos-Naranjo EAndrades-Moreno LDavy A J. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densifloraPlant Physiology and Biochemistry201363: 115–121

[10]

Li PSong ALi Z JFan F LLiang Y C. Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). Plant and Soil2012354(1−2): 407–419

[11]

Song ALi ZZhang JXue GFan FLiang Y. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Journal of Hazardous Materials2009172(1): 74–83

[12]

Ali SFarooq M AYasmeen THussain SArif M SAbbas FBharwana S AZhang G. The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicology and Environmental Safety201389: 66–72

[13]

Shi QBao ZZhu ZHe YQian QYu J. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry200566(13): 1551–1559

[14]

Kaya CTuna A LSonmez OInce FHiggs D. Mitigation effects of silicon on maize plants grown at high zinc. Journal of Plant Nutrition200932(10): 1788–1798

[15]

Rizwan MMeunier J DMiche HKeller C. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. Journal of Hazardous Materials2012209−210: 326–334

[16]

Wu J WShi YZhu Y XWang Y CGong H J. Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere201323(6): 815–825

[17]

Liu J GLi K QXu J KZhang Z JMa T BLu X LYang J CZhu Q S. Lead toxicity, uptake and translocation in different rice cultivars. Plant Science2003165(4): 793–802

[18]

Wang S HLuo Q SLiu C PLi F BShen Z G. Effects of leaf application of nanometer silicon to the accumulation of heavy metals in rice grains. Ecology & Environment200716(5): 875–878 (in Chinese)

[19]

Doncheva SPoschenrieder CStoyanova ZGeorgieva KVelichkova MBarceló J. Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environmental and Experimental Botany200965(2−3): 189–197

[20]

Katayama HBanba NSugimura YTatsumi MKusakari SOyama HNakahira A. Subcellular compartmentation of strontium and zinc in mulberry idioblasts in relation to phytoremediation potential. Environmental and Experimental Botany201385: 30–35

[21]

Liu JZhang HZhang YChai T. Silicon attenuates cadmium toxicity in Solanum nigrum L. by reducing cadmium uptake and oxidative stress. Plant Physiology and Biochemistry201368: 1–7

[22]

Khandekar SLeisner S. Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. Journal of Plant Physiology2011168(7): 699–705

[23]

Nwugo C CHuerta A J. Silicon-induced cadmium resistance in rice (Oryza sativa). Journal of Plant Nutrition and Soil Science2008171(6): 841–848

[24]

Ma J FTamai KYamaji NMitani NKonishi SKatsuhara MIshiguro MMurata YYano M. A silicon transporter in rice. Nature2006440(7084): 688–691

[25]

Liu J GZhang WQu PWang M X. Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands. Frontiers of Environmental Science & Engineering, doi: 10.1007/s11783-014-0746-x

[26]

Inal APilbeam D JGunes A. Silicon increases tolerance to boron toxicity and reduces oxidative damage in barley. Journal of Plant Nutrition200932(1): 112–128

[27]

Rogalla HRömheld V. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant, Cell & Environment, 200225(4): 549–555

[28]

Vaculík MLandberg TGreger MLuxová MStoláriková MLux A. Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Annals of Botany2012110(2): 433–443

[29]

Ye JYan CLiu JLu HLiu TSong Z. Effects of silicon on the distribution of cadmium compartmentation in root tips of Kandelia obovata (S., L.) Yong. Environmental Pollution2012162: 369–373

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (409KB)

3019

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/