Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment

Yanlai HAN, Michael D. Y. YANG, Weixian ZHANG, Weile YAN

PDF(980 KB)
PDF(980 KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 813-822. DOI: 10.1007/s11783-015-0784-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment

Author information +
History +

Abstract

Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a facile method to screen the reactivity of candidate nZVI materials produced using different methods or under varying synthesis conditions has yet been established. In this study, four reaction parameters were adjusted in the preparation of borohydride-reduced nZVI. The reductive properties of the resultant nanoparticles were assayed independently using two model aqueous contaminants, Cu(II) and nitrate. The results confirm that the reductive reactivity of nZVI is most sensitive to the initial concentration of iron precursor, borohydride feed rate, and the loading ratio of borohydride to ferric ion during particle synthesis. Solution mixing speed, in contrast, carries a relative small weight on the reactivity of nZVI. The two probing reactions (i.e., Cu(II) and nitrate reduction) are able to generate consistent and quantitative inference about the mass-normalized surface activity of nZVI. However, the nitrate assay is valid in dilute aqueous solutions only (50 mg·L−1 or lower) due to accelerated deactivation of iron surface at elevated nitrate concentrations. Additional insights including the structural and chemical makeup of nZVI can be garnered from Cu(II) reduction assessments. The reactivity assays investigated in this study can facilitate screening of candidate materials or optimization of nZVI production parameters, which complement some of the more sophisticated but less chemically specific material characterization methods used in the nZVI research.

Keywords

iron nanoparticles / nanoscale iron particles (nZVI) / synthesis / characterization / Cu(II) reduction / nitrate reduction

Cite this article

Download citation ▾
Yanlai HAN, Michael D. Y. YANG, Weixian ZHANG, Weile YAN. Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment. Front. Environ. Sci. Eng., 2015, 9(5): 813‒822 https://doi.org/10.1007/s11783-015-0784-z

References

[1]
O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 2013, 51: 104–122
CrossRef Google scholar
[2]
Crane R A, Scott T B. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 2012, 211−212: 112–125
CrossRef Pubmed Google scholar
[3]
Mueller N C, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research International, 2012, 19(2): 550–558
CrossRef Pubmed Google scholar
[4]
Karn B, Kuiken T, Otto M. Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environmental Health Perspectives, 2009, 117(12): 1823–1831
CrossRef Pubmed Google scholar
[5]
Glavee G N, Klabunde K J, Sorensen C M, Hadjipanayis G C. Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media— Formation of nanoscale Fe, FeB, and Fe2B powders. Inorganic Chemistry, 1995, 34(1): 28–35
CrossRef Google scholar
[6]
Cushing B L, Kolesnichenko V L, O’Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews, 2004, 104(9): 3893–3946
CrossRef Pubmed Google scholar
[7]
Liu H B, Chen T H, Chang D Y, Chen D, Liu Y, He H P, Yuan P, Frost R. Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite. Materials Chemistry and Physics, 2012, 133(1): 205–211
CrossRef Google scholar
[8]
Li S, Yan W, Zhang W. Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chemistry, 2009, 11(10): 1618–1626
CrossRef Google scholar
[9]
He F, Zhao D, Paul C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research, 2010, 44(7): 2360–2370
CrossRef Pubmed Google scholar
[10]
Zhan J, Sunkara B, Le L, John V T, He J, McPherson G L, Piringer G, Lu Y. Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 2009, 43(22): 8616–8621
CrossRef Pubmed Google scholar
[11]
Wang Q, Kanel S R, Park H, Ryu A, Choi H. Controllable synthesis, characterization, and magnetic properties of nanoscale zerovalent iron with specific high Brunauer-Emmett-Teller surface area. Journal of Nanoparticle Research, 2009, 11(3): 749–755
CrossRef Google scholar
[12]
Wang C, Baer D R, Amonette J E, Engelhard M H, Antony J, Qiang Y. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of the American Chemical Society, 2009, 131(25): 8824–8832
CrossRef Pubmed Google scholar
[13]
Ponder S M, Darab J G, Bucher J, Caulder D, Craig I, Davis L, Edelstein N, Lukens W, Nitsche H, Rao L F, Shuh D K, Mallouk T E. Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials, 2001, 13(2): 479–486
CrossRef Google scholar
[14]
Shi Z, Nurmi J T, Tratnyek P G. Effects of nano zero-valent iron on oxidation-reduction potential. Environmental Science & Technology, 2011, 45(4): 1586–1592
CrossRef Pubmed Google scholar
[15]
Liou Y H, Lo S L, Kuan W H, Lin C J, Weng S C. Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Research, 2006, 40(13): 2485–2492
CrossRef Pubmed Google scholar
[16]
Hwang Y H, Kim D G, Shin H S. Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron. Applied Catalysis B: Environmental, 2011, 105(1−2): 144–150
CrossRef Google scholar
[17]
Farrell J, Kason M, Melitas N, Li T. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environmental Science & Technology, 2000, 34(3): 514–521
CrossRef Google scholar
[18]
Liu Y, Phenrat T, Lowry G V. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology, 2007, 41(22): 7881–7887
CrossRef Pubmed Google scholar
[19]
Martin J E, Herzing A A, Yan W, Li X Q, Koel B E, Kiely C J, Zhang W X. Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir, 2008, 24(8): 4329–4334
CrossRef Pubmed Google scholar
[20]
Ku Y, Chen C H. Kinetic-study of copper deposition on iron by cementation reaction. Separation Science and Technology, 1992, 27(10): 1259–1275
CrossRef Google scholar
[21]
Thanh N T K, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 2014, 114(15): 7610–7630
CrossRef Pubmed Google scholar
[22]
Nurmi J T, Tratnyek P G, Sarathy V, Baer D R, Amonette J E, Pecher K, Wang C, Linehan J C, Matson D W, Penn R L, Driessen M D. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology, 2005, 39(5): 1221–1230
CrossRef Pubmed Google scholar
[23]
Wang C M, Baer D R, Thomas L E, Amonette J E, Antony J, Qiang Y, Duscher G. Void formation during early stages of passivation: initial oxidation of iron nanoparticles at room temperature. Journal of Applied Physics, 2005, 98(9): 094308
CrossRef Google scholar
[24]
Sohn K, Kang S W, Ahn S, Woo M, Yang S K. Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environmental Science & Technology, 2006, 40(17): 5514–5519
CrossRef Pubmed Google scholar
[25]
American Public Health Association. Standard methods for the examination of water and wastewater. 20th ed. Washington, DC: American Public Health Association, 1998
[26]
Goldstein J, Newbury D E, Joy D C, Lyman C E, Echlin P, Lifshin E, Sawyer L, Michael J R. Scanning Electron Microscopy and X-ray Microanalysis. 3rd ed. New York: Springer, 2003
[27]
Karabelli D, Uzum C, Shahwan T, Eroglu A E, Scott T B, Hallam K R, Lieberwirth I. Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake. Industrial & Engineering Chemistry Research, 2008, 47(14): 4758–4764
CrossRef Google scholar
[28]
Li X Q, Zhang W X. Sequestration of metal cations with zerovalent iron nanoparticles—A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C, 2007, 111(19): 6939–6946
CrossRef Google scholar
[29]
Macdonald J E, Veinot J G C. Removal of residual metal catalysts with iron/iron oxide nanoparticles from coordinating environments. Langmuir, 2008, 24(14): 7169–7177
CrossRef Pubmed Google scholar
[30]
Rangsivek R, Jekel M R. Removal of dissolved metals by zero-valent iron (ZVI): kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Research, 2005, 39(17): 4153–4163
CrossRef Pubmed Google scholar
[31]
Liu Y Q, Choi H, Dionysiou D, Lowry G V. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 2005, 17(21): 5315–5322
CrossRef Google scholar
[32]
Yan W, Herzing A A, Kiely C J, Zhang W X. Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 2010, 118(3−4): 96–104
CrossRef Pubmed Google scholar
[33]
Liu Y, Majetich S A, Tilton R D, Sholl D S, Lowry G V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 2005, 39(5): 1338–1345
CrossRef Pubmed Google scholar
[34]
Klausen J, Vikesland P J, Kohn T, Burris D R, Ball W P, Roberts A L. Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds. Environmental Science & Technology, 2003, 37(6): 1208–1218
CrossRef Pubmed Google scholar
[35]
Ordonez S, Vivas B P, Diez F V. Minimization of the deactivation of palladium catalysts in the hydrodechlorination of trichloroethylene in wastewaters. Applied Catalysis B: Environmental, 2010, 95(3−4): 288–296
CrossRef Google scholar

Acknowledgements

The authors are grateful for the financial support from Texas Tech University for undergraduate assistantship and graduate fellowship.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(980 KB)

Accesses

Citations

Detail

Sections
Recommended

/