Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment

Yanlai HAN , Michael D. Y. YANG , Weixian ZHANG , Weile YAN

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 813 -822.

PDF (980KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 813 -822. DOI: 10.1007/s11783-015-0784-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment

Author information +
History +
PDF (980KB)

Abstract

Nanoscale iron particles (nZVI) is one of the most important engineered nanomaterials applied to environmental pollution control and abatement. Although a multitude of synthesis approaches have been proposed, a facile method to screen the reactivity of candidate nZVI materials produced using different methods or under varying synthesis conditions has yet been established. In this study, four reaction parameters were adjusted in the preparation of borohydride-reduced nZVI. The reductive properties of the resultant nanoparticles were assayed independently using two model aqueous contaminants, Cu(II) and nitrate. The results confirm that the reductive reactivity of nZVI is most sensitive to the initial concentration of iron precursor, borohydride feed rate, and the loading ratio of borohydride to ferric ion during particle synthesis. Solution mixing speed, in contrast, carries a relative small weight on the reactivity of nZVI. The two probing reactions (i.e., Cu(II) and nitrate reduction) are able to generate consistent and quantitative inference about the mass-normalized surface activity of nZVI. However, the nitrate assay is valid in dilute aqueous solutions only (50 mg·L−1 or lower) due to accelerated deactivation of iron surface at elevated nitrate concentrations. Additional insights including the structural and chemical makeup of nZVI can be garnered from Cu(II) reduction assessments. The reactivity assays investigated in this study can facilitate screening of candidate materials or optimization of nZVI production parameters, which complement some of the more sophisticated but less chemically specific material characterization methods used in the nZVI research.

Keywords

iron nanoparticles / nanoscale iron particles (nZVI) / synthesis / characterization / Cu(II) reduction / nitrate reduction

Cite this article

Download citation ▾
Yanlai HAN, Michael D. Y. YANG, Weixian ZHANG, Weile YAN. Optimizing synthesis conditions of nanoscale zero-valent iron (nZVI) through aqueous reactivity assessment. Front. Environ. Sci. Eng., 2015, 9(5): 813-822 DOI:10.1007/s11783-015-0784-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’Carroll DSleep BKrol MBoparai HKocur C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources201351: 104–122

[2]

Crane R AScott T B. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Journal of Hazardous Materials2012211−212: 112–125

[3]

Mueller N CBraun JBruns JČerník MRissing PRickerby DNowack B. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research International201219(2): 550–558

[4]

Karn BKuiken TOtto M. Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environmental Health Perspectives2009117(12): 1823–1831

[5]

Glavee G NKlabunde K JSorensen C MHadjipanayis G C. Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media— Formation of nanoscale Fe, FeB, and Fe2B powders. Inorganic Chemistry199534(1): 28–35

[6]

Cushing B LKolesnichenko V LO’Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews2004104(9): 3893–3946

[7]

Liu H BChen T HChang D YChen DLiu YHe H PYuan PFrost R. Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite. Materials Chemistry and Physics2012133(1): 205–211

[8]

Li SYan WZhang W. Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chemistry200911(10): 1618–1626

[9]

He FZhao DPaul C. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research201044(7): 2360–2370

[10]

Zhan JSunkara BLe LJohn V THe JMcPherson G LPiringer GLu Y. Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology200943(22): 8616–8621

[11]

Wang QKanel S RPark HRyu AChoi H. Controllable synthesis, characterization, and magnetic properties of nanoscale zerovalent iron with specific high Brunauer-Emmett-Teller surface area. Journal of Nanoparticle Research200911(3): 749–755

[12]

Wang CBaer D RAmonette J EEngelhard M HAntony JQiang Y. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of the American Chemical Society2009131(25): 8824–8832

[13]

Ponder S MDarab J GBucher JCaulder DCraig IDavis LEdelstein NLukens WNitsche HRao L FShuh D KMallouk T E. Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chemistry of Materials200113(2): 479–486

[14]

Shi ZNurmi J TTratnyek P G. Effects of nano zero-valent iron on oxidation-reduction potential. Environmental Science & Technology201145(4): 1586–1592

[15]

Liou Y HLo S LKuan W HLin C JWeng S C. Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Research200640(13): 2485–2492

[16]

Hwang Y HKim D GShin H S. Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron. Applied Catalysis B: Environmental2011105(1−2): 144–150

[17]

Farrell JKason MMelitas NLi T. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environmental Science & Technology200034(3): 514–521

[18]

Liu YPhenrat TLowry G V. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology200741(22): 7881–7887

[19]

Martin J EHerzing A AYan WLi X QKoel B EKiely C JZhang W X. Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir200824(8): 4329–4334

[20]

Ku YChen C H. Kinetic-study of copper deposition on iron by cementation reaction. Separation Science and Technology199227(10): 1259–1275

[21]

Thanh N T KMaclean NMahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews2014114(15): 7610–7630

[22]

Nurmi J TTratnyek P GSarathy VBaer D RAmonette J EPecher KWang CLinehan J CMatson D WPenn R LDriessen M D. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology200539(5): 1221–1230

[23]

Wang C MBaer D RThomas L EAmonette J EAntony JQiang YDuscher G. Void formation during early stages of passivation: initial oxidation of iron nanoparticles at room temperature. Journal of Applied Physics200598(9): 094308

[24]

Sohn KKang S WAhn SWoo MYang S K. Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environmental Science & Technology200640(17): 5514–5519

[25]

American Public Health Association. Standard methods for the examination of water and wastewater. 20th ed. Washington, DC: American Public Health Association, 1998

[26]

Goldstein JNewbury D EJoy D CLyman C EEchlin PLifshin ESawyer LMichael J R. Scanning Electron Microscopy and X-ray Microanalysis. 3rd ed. New York: Springer, 2003

[27]

Karabelli DUzum CShahwan TEroglu A EScott T BHallam K RLieberwirth I. Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake. Industrial & Engineering Chemistry Research200847(14): 4758–4764

[28]

Li X QZhang W X. Sequestration of metal cations with zerovalent iron nanoparticles—A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C2007111(19): 6939–6946

[29]

Macdonald J EVeinot J G C. Removal of residual metal catalysts with iron/iron oxide nanoparticles from coordinating environments. Langmuir200824(14): 7169–7177

[30]

Rangsivek RJekel M R. Removal of dissolved metals by zero-valent iron (ZVI): kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Research200539(17): 4153–4163

[31]

Liu Y QChoi HDionysiou DLowry G V. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials200517(21): 5315–5322

[32]

Yan WHerzing A AKiely C JZhang W X. Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology2010118(3−4): 96–104

[33]

Liu YMajetich S ATilton R DSholl D SLowry G V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology200539(5): 1338–1345

[34]

Klausen JVikesland P JKohn TBurris D RBall W PRoberts A L. Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds. Environmental Science & Technology200337(6): 1208–1218

[35]

Ordonez SVivas B PDiez F V. Minimization of the deactivation of palladium catalysts in the hydrodechlorination of trichloroethylene in wastewaters. Applied Catalysis B: Environmental201095(3−4): 288–296

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (980KB)

2884

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/