Efficient removal of heavy metals from electroplating wastewater using polymer ligands

Md. Lutfor RAHMAN , Shaheen M. SARKAR , Mashitah Mohd YUSOFF

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 352 -361.

PDF (883KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 352 -361. DOI: 10.1007/s11783-015-0783-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Efficient removal of heavy metals from electroplating wastewater using polymer ligands

Author information +
History +
PDF (883KB)

Abstract

Poly(hydroxamic acid)-poly(amidoxime) chelating ligands were synthesized from poly(methyl acrylate-co-acrylonitrile) grafted acacia cellulose for removing toxic metal ions from industrial wastewaters. These ligands showed higher adsorption capacity to copper (2.80 mmol∙g−1) at pH 6. In addition, sorption capacities to other metal ions such as iron, zinc, chromium, and nickel were also found high at pH 6. The metal ions sorption rate (t1/2) was very fast. The rate of adsorption of copper, iron, zinc, chromium, nickel, cobalt, cadmium and lead were 4, 5, 7, 5, 5, 8, 9 and 11 min, respectively. Therefore, these ligands have an advantage to the metal ions removal using the column technique. We have successfully investigated the known concentration of metal ions using various parameters, which is essential for designing a fixed bed column with ligands. The wastewater from electroplating plants used in this study, having chromium, zinc, nickel, copper and iron, etc. For chromium wastewater, ICP analysis showed that the Cr removal was 99.8% and other metal ions such as Cu, Ni, Fe, Zn, Cd, Pb, Co and Mn removal were 94.7%, 99.2%, 99.9%, 99.9%, 99.5%, 99.9%, 95.6% and 97.6%, respectively. In case of cyanide wastewater, the metal removal, especially Ni and Zn removal were 96.5 and 95.2% at higher initial concentration. For acid/alkali wastewater, metal ions removing for Cd, Cr and Fe were 99.2%, 99.5% and 99.9%, respectively. Overall, these ligands are useful for metal removal by column method from industrial wastewater especially plating wastewater.

Keywords

heavy metals / adsorption / wastewater / chelating ligands / plating industry

Cite this article

Download citation ▾
Md. Lutfor RAHMAN, Shaheen M. SARKAR, Mashitah Mohd YUSOFF. Efficient removal of heavy metals from electroplating wastewater using polymer ligands. Front. Environ. Sci. Eng., 2016, 10(2): 352-361 DOI:10.1007/s11783-015-0783-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’Connell D WBirkinshaw CO’Dwyer T F. Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresource Technology200899(15): 6709–6724

[2]

Klemm DSchmauder H PHeinze T. Cellulose, Polysaccharides II. Poly-saccharides from Eukaryotes. In: Vandamme SSteinbuchel E J, eds. Weinheim: Wiley VCH, 2002, 275–320

[3]

Dahou WGhemati DOudia AAliouche D. Preparation and biological characterization of cellulose graft copolymers. Biochemical Engineering Journal201048(2): 187–194

[4]

Lutfor M RMashitah M Y. Synthesis of poly(hydroxamic acid)-poly(amidoxime) chelating ligands for removal of metals from industrial wastewater. E-Journal of Chemistry20118(3): 1038–1043

[5]

Kadirvelu KThamaraiselvi KNamasivayam C. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology200176(1): 63–65

[6]

Wilkins EYang Q. Comparison of the heavy metal removal efficiency of bio-ligands and granular activated carbon. Journal of Environmental Science and Health, Part A.199631: 2111–2128

[7]

Vivek Narayanan NGanesan M. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation. Journal of Hazardous Materials2009161(1): 575–580

[8]

Mrozowski JZielinski J. Studies of zinc and lead removal from industrial wastes by electrocoagulation. Environmental Protection Engineering19839: 77–85

[9]

Farka JMitchell G D. An electrochemical treatment process for heavy metal recovery wastewaters. AIChE Symposium Series1985243: 57–66

[10]

Ratna Kumar PChaudhari SKhilar K CMahajan S P. Removal of arsenic from water by electrocoagulation. Chemosphere200455(9): 1245–1252

[11]

Kyzas G ZKostoglou MLazaridis N KBikiaris D N N. N-(2-Carboxybenzyl) grafted chitosan as adsorptive agent for simultaneous removal of positively and negatively charged toxic metal ions. Journal of Hazardous Materials2013244−245: 29–38

[12]

Simon Y W SLutfor M RArshad S ELoumie S NBaba M. Synthesis and characterization of poly(hydroxamic acid)-poly(amidoxime) chelating ligands from polymer-grafted acacia cellulose. Journal of Applied Polymer Science2011124: 4443–4451

[13]

Sarkar MAcharya P KBhattacharya B. Removal characteristics of some priority organic pollutants from water in a fixed bed fly ash column. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire)200580(12): 1349–1355

[14]

Gupta V KSrivastava S KTyagi R. Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Resources200034: 1543–1550

[15]

Lutfor M RSilong SWan Yunus W M ZRahman M Z AAhmad MHaron J. Synthesis and characterization of poly(hydroxamic acid) chelating resin from poly(methyl acrylate) grafted sago starch. Journal of Applied Polymer Science200079(7): 1256–1264

[16]

Smith P A S. The Chemistry of Open-Chain Organic Nitrogen Compounds. New York-Amsterdam: Verlag W.A. Benjamin Inc:, 1962

[17]

Agrawal Y K. Hydroxamic acids and their metal complexes. Russian Chemical Reviews197948(10): 948–963

[18]

Hall DLlewellyn F J. The crystal structure of formamidoxime. Acta Crystallographica19569(2): 108–112

[19]

Millen M HWaters W A. The electron spin resonance spectra of some hydroxylamine free radicals. Part IV. Radicals from alkylhydroximic acids and amidoximes. Journal of the Chemical Society, Section B: Physical Organic1968: 408–411

[20]

Dorine L VPeters J AKuzee H CRaaijmakers H W Cvan Bekkum H. Modification of inulin with amidoxime groups and coordination with copper(II) ions. Carbohydrate Polymers199837(3): 209–214

[21]

Martín-Lara M ABlázquez GTrujillo M CPérez ACalero M. New treatment of real electroplating wastewater containing heavy metal ions by adsorption onto olive stone. Journal of Cleaner Production201481: 120–129

[22]

Xu YZhou J Z JChen CLiu QQian GXu Z P. CN and heavy metal removal through formation of layered double hydroxides from mixed CN-containing electroplating wastewaters and pickle acid liquor. Chemical Engineering Journal2013215−216: 411–417

[23]

Juang R SKao H CLiu F Y. Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands. Journal of Hazardous Materials B2006128(1): 53–59

[24]

Liu MDeng YZhan HZhang X. Adsorption and desorption of copper(II) from solutions on new spherical cellulose adsorbent. Journal of Applied Polymer Science200284(3): 478–485

[25]

O’Connell D WBirkinshaw CO’Dwyer T F. A chelating cellulose adsorbent for the removal of Cu(II) from aqueous solutions. Journal of Applied Polymer Science200699(6): 2888–2897

[26]

Santhana K K AKalidhasan SVidya RRajesh N. Adsorptive demercuration by virtue of an appealing interaction involving biopolymer cellulose and mercaptobenzothiazole. Industrial & Engineering Chemistry Research201352(34): 11838–11849

[27]

Awual M RYaita TEl-Safty S AShiwaku HSuzuki HOkamoto Y. Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chemical Engineering Journal2013221: 322–330

[28]

Awual M RIsmail M M RYaita TKhaleque M AFerdows M. pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chemical Engineering Journal2014236: 100–109

[29]

Awual M RHasan M M. Novel conjugate adsorbent for visual detection and removal of toxic lead(II) ions from water. Microporous and Mesoporous Materials2014196: 261–269

[30]

Awual M RHasan M MShahat A. Functionalized novel mesoporous adsorbent for selective lead(II) ionsmonitoring and removal from wastewater. Sensors and Actuators. B, Chemical2014203: 854–863

[31]

Awual M RIsmael MYaita T. Efficient detection and extraction of cobalt(II) from lithium ionbatteries and wastewater by novel composite adsorbent. Sensors and Actuators. B, Chemical2014191: 9–18

[32]

Awual M RYaita TOkamoto Y. A novel ligand based dual conjugate adsorbent for cobalt(II) and copper(II) ions capturing from water. Sensors and Actuators. B, Chemical2014203: 71–80

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (883KB)

3049

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/