Efficient and selective electro-reduction of nitrobenzene by the nano-structured Cu catalyst prepared by an electrodeposited method via tuning applied voltage

Yali CHEN , Lu XIONG , Weikang WANG , Xing ZHANG , Hanqing YU

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 897 -904.

PDF (849KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 897 -904. DOI: 10.1007/s11783-015-0782-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Efficient and selective electro-reduction of nitrobenzene by the nano-structured Cu catalyst prepared by an electrodeposited method via tuning applied voltage

Author information +
History +
PDF (849KB)

Abstract

Pollution caused by toxic nitrobenzene has been a widespread environmental concern. Selective reduction of nitrobenzene to aniline is beneficial to further efficient and cost-effective biologic treatment. Electrochemical reduction is a promising method and Cu-based catalysts have been found to be an efficient cathode material for this purpose. In this work, Cu catalysts with different morphologies were fabricated on Ti plate using a facile electrodepositon method via tuning the applied voltage. The dendritic nano-structured Cu catalysts obtained at high applied voltages exhibited an excellent efficiency and selectivity toward the reduction of nitrobenzene to aniline. Effects of the working potential and initial nitrobenzene concentration on the selective reduction of nitrobenzene to aniline using the Cu/Ti electrode were investigated. A high rate constant of 0.0251 min−1 and 97.1% aniline selectivity were achieved. The fabricated nano-structured Cu catalysts also exhibited good stability. This work provides a facile way to prepare highly efficient, cost-effective, and stable nano-structured electrocatalysts for pollutant reduction.

Keywords

nitrobenzene / nano-structured Cu / electro-reduction / voltage-dependent electrodeposition / high selectivity / high stability

Cite this article

Download citation ▾
Yali CHEN, Lu XIONG, Weikang WANG, Xing ZHANG, Hanqing YU. Efficient and selective electro-reduction of nitrobenzene by the nano-structured Cu catalyst prepared by an electrodeposited method via tuning applied voltage. Front. Environ. Sci. Eng., 2015, 9(5): 897-904 DOI:10.1007/s11783-015-0782-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang A JCheng H YLiang BRen N QCui DLin NKim B HRabaey K. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environmental Science & Technology201145(23): 10186–10193

[2]

Pan JGuan B. Adsorption of nitrobenzene from aqueous solution on activated sludge modified by cetyltrimethylammonium bromide. Journal of Hazardous Materials2010183(1−3): 341–346

[3]

Rodriguez MTimokhin VMichl FContreras SGimenez JEsplugas S. The influence of different irradiation sources on the treatment of nitrobenzene. Catalysis Today200276(2−4): 291–300

[4]

Beauchamp R O Jr, Irons R DRickert D ECouch D BHamm T E Jr. A critical review of the literature on nitrobenzene toxicity. Critical Reviews in Toxicology198211(1): 33–84

[5]

Meng XCheng HAkiyama YHao YQiao WYu YZhao FFujita SArai M. Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/γ-Al2O3: Significance of molecular interactions. Journal of Catalysis2009264(1): 1–10

[6]

Zhu LLv MDai XXu XQi HYu Y. Reaction kinetics of the degradation of chloroanilines and aniline by aerobic granule. Biochemical Engineering Journal201268(15): 215–220

[7]

Brillas EMur ESauleda RSànchez LPeral JDomènech XCasado J. Aniline mineralization by AOP’s: Anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental199816(1): 31–42

[8]

Li Y PCao H BLiu C MZhang Y. Electrochemical reduction of nitrobenzene at carbon nanotube electrode. Journal of Hazardous Materials2007148(1−2): 158–163

[9]

Sheng XWouters BBreugelmans THubin AVankelecom I F JPescarmona P P. Cu/CuxO and Pt nanoparticles supported on multi-walled carbon nanotubes as electrocatalysts for the reduction of nitrobenzene. Applied Catalysis B: Environmental2014147(0): 330–339

[10]

Jiang JZhai RBao X. Electrocatalytic properties of Cu-Zr amorphous alloy towards the electrochemical hydrogenation of nitrobenzene. Journal of Alloys and Compounds2003354(1−2): 248–258

[11]

Becker A RSternson L A. Oxidation of phenylhydroxylamine in aqueous solution: A model for study of the carcinogenic effect of primary aromatic amines. Proceedings of the National Academy of Sciences of the United States of America198178(4I): 2003–2007

[12]

Kokkinidis GJüttner K. The electrocatalytic influence of underpotential lead adsorbates on the reduction of nitrobenzene and nitrosobenzene on silver single crystal surfaces in methanolic solutions. Electrochimica Acta198126(8): 971–977

[13]

Grošková DŠtolcová MHronec M. Reaction of <?Pub Caret?>N-phenylhydroxylamine in the presence of clay catalysts. Catalysis Letters200069(1/2): 113–116

[14]

Tanaka ANishino YSakaguchi SYoshikawa TImamura KHashimoto KKominami H. Functionalization of a plasmonic Au/TiO2 photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light. Chemical Communications (Cambridge, England)201349(25): 2551–2553

[15]

Luan FBurgos W DXie LZhou Q. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32. Environmental Science & Technology201044(1): 184–190

[16]

Wang JLu HZhou YSong YLiu GFeng Y. Enhanced biotransformation of nitrobenzene by the synergies of Shewanella species and mediator-functionalized polyurethane foam. Journal of Hazardous Materials2013252−253(0): 227–232

[17]

Huang XLi YLi YZhou HDuan XHuang Y. Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Letters201212(8): 4265–4270

[18]

Gao YMa DWang CGuan JBao X. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communications (Cambridge, England)201147(8): 2432–2434

[19]

Tada HIshida TTakao AIto S. Drastic enhancement of TiO2-photocatalyzed reduction of nitrobenzene by loading Ag clusters. Langmuir200420(19): 7898–7900

[20]

Maldotti AAndreotti LMolinari ATollari SPenoni ACenini S. Photochemical and photocatalytic reduction of nitrobenzene in the presence of cyclohexene. Journal of Photochemistry and Photobiology A Chemistry2000133(1−2): 129–133

[21]

Zhang S JJiang HLi M JYu H QYin HLi Q R. Kinetics and mechanisms of radiolytic degradation of nitrobenzene in aqueous solutions. Environmental Science & Technology200741(6): 1977–1982

[22]

Sun ZWei XHu XWang KShen H. Electrocatalytic dechlorination of 2,4-dichlorophenol in aqueous solution on palladium loaded meshed titanium electrode modified with polymeric pyrrole and surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects2012414(20): 314–319

[23]

Zhang YZeng LBo XWang HGuo L. Electrochemical study of nitrobenzene reduction using novel Pt nanoparticles/macroporous carbon hybrid nanocomposites. Analytica Chimica Acta2012752: 45–52

[24]

Chen ZWang ZWu DMa L. Electrochemical study of nitrobenzene reduction on galvanically replaced nanoscale Fe/Au particles. Journal of Hazardous Materials2011197(0): 424–429

[25]

Shindo HNishihara C. Detection of nitrosobenzene as an intermediate in the electrochemical reduction of nitrobenzene on Ag in a flow reactor. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry1989263(2): 415–420

[26]

Yuan X ZMa Z FJiang Q ZWu W S. Cogeneration of cyclohexylamine and electrical power using PEM fuel cell reactor. Electrochemistry Communications20013(11): 599–602

[27]

Cyr AHuot PMarcoux J FBelot GLaviron ELessard J. The electrochemical reduction of nitrobenzene and azoxybenzene in neutral and basic aqueous methanolic solutions at polycrystalline copper and nickel electrodes. Electrochimica Acta198934(3): 439–445

[28]

Qiu RCha H GNoh H BShim Y BZhang X LQiao RZhang DKim Y IPal UKang Y S. Preparation of dendritic copper nanostructures and their characterization for electroreduction. Journal of Physical Chemistry C2009113(36): 15891–15896

[29]

Sun MReible D DLowry G VGregory K B. Effect of applied voltage, initial concentration, and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes. Environmental Science & Technology201246(11): 6174–6181

[30]

Yang BYu GHuang J. Electrocatalytic hydrodechlorination of 2,4,5-trichlorobiphenyl on a palladium-modified nickel foam cathode. Environmental Science & Technology200741(21): 7503–7508

[31]

Li AZhao XHou YLiu HWu LQu J. The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. Applied Catalysis B: Environmental2012111−112(0): 628–635

[32]

Zhu KBaig S AXu JSheng TXu X. Electrochemical reductive dechlorination of 2,4-dichlorophenoxyacetic acid using a palladium/nickel foam electrode. Electrochimica Acta201269(0): 389–396 doi:10.1016/j.electacta.2012.03.038

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (849KB)

2830

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/