A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles

Ana PICADO , Susana M. PAIXÃO , Liliana MOITA , Luis SILVA , Mário S. DINIZ , Joana LOURENÇO , Isabel PERES , Luisa CASTRO , José Brito CORREIA , Joana PEREIRA , Isabel FERREIRA , António Pedro Alves MATOS , Pedro BARQUINHA , Elsa MENDONCA

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 793 -803.

PDF (1249KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 793 -803. DOI: 10.1007/s11783-015-0775-0
RESEARCH ARTICLE
RESEARCH ARTICLE

A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles

Author information +
History +
PDF (1249KB)

Abstract

The new properties of engineered nanoparticles drive the need for new knowledge on the safety, fate, behavior and biologic effects of these particles on organisms and ecosystems. Titanium dioxide nanoparticles have been used extensively for a wide range of applications, e.g, self-cleaning surface coatings, solar cells, water treatment agents, topical sunscreens. Within this scenario increased environmental exposure can be expected but data on the ecotoxicological evaluation of nanoparticles are still scarce. The main purpose of this work was the evaluation of effects of TiO2 nanoparticles in several organisms, covering different trophic levels, using a battery of aquatic assays. Using fish as a vertebrate model organism tissue histological and ultrastructural observations and the stress enzyme activity were also studied. TiO2 nanoparticles (Aeroxide® P25), two phase composition of anatase (65%) and rutile (35%) with an average particle size value of 27.6±11 nm were used. Results on the EC50 for the tested aquatic organisms showed toxicity for the bacteria, the algae and the crustacean, being the algae the most sensitive tested organism. The aquatic plant Lemna minor showed no effect on growth. The fish Carassius auratus showed no effect on a 21 day survival test, though at a biochemical level the cytosolic Glutathione-S-Transferase total activity, in intestines, showed a general significant decrease (p<0.05) after 14 days of exposure for all tested concentrations. The presence of TiO2 nanoparticles aggregates were observed in the intestine lumen but their internalization by intestine cells could not be confirmed.

Keywords

ecotoxicity / enzymatic analysis / histology / transmission electron microscopy (TEM) / TiO2-nanoparticles

Cite this article

Download citation ▾
Ana PICADO, Susana M. PAIXÃO, Liliana MOITA, Luis SILVA, Mário S. DINIZ, Joana LOURENÇO, Isabel PERES, Luisa CASTRO, José Brito CORREIA, Joana PEREIRA, Isabel FERREIRA, António Pedro Alves MATOS, Pedro BARQUINHA, Elsa MENDONCA. A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles. Front. Environ. Sci. Eng., 2015, 9(5): 793-803 DOI:10.1007/s11783-015-0775-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schmid G. Nanoparticles: From Theory to Application. Weinheim, Germany: Wiley-VCH, 2010

[2]

Kalantzi O IBiskos G. Methods for assessing basic particle properties and cytotoxicity of engineered nanoparticles. Toxics20142(1): 79–91

[3]

Chen XMao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews2007107(7): 2891–2959

[4]

Dalai SPakrashi SChandrasekaran NMukherjee A. Acute toxicity of TiO2 nanoparticles to Ceriodaphnia dubia under visible light and dark conditions in a freshwater system. PLoS ONE20138(4): e62970

[5]

Liu XChen GSu C. Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phase. Journal of Colloid and Interface Science2011363(1): 84–91

[6]

Moore M N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International200632(8): 967–976

[7]

Kahru ADubourguier H C. From ecotoxicology to nanoecotoxicology. Toxicology2010269(2–3): 105–119

[8]

Warheit D BHoke R AFinlay CDonner E MReed K LSayes C M. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicology Letters2007171(3): 99–110

[9]

Wiench KWohlleben WHisgen VRadke KSalinas EZok SLandsiedel R. Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magnaChemosphere200976(10): 1356–1365

[10]

Zhu XZhu LChen YTian S. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magnaJournal of Nanoparticle Research200911(1): 67–75

[11]

Zhu XChang YChen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magnaChemosphere201078(3): 209–215

[12]

Heinlaan MIvask ABlinova IDubourguier H CKahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurusChemosphere200871(7): 1308–1316

[13]

Blaise CGagné FFérard J FEullaffroy P. Ecotoxicity of selected nano-materials to aquatic organisms. Environmental Toxicology200823(5): 591–598

[14]

Aruoja VDubourguier H CKasemets KKahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitataScience of the Total Environment2009407(4): 1461–1468

[15]

Hund-Rinke KSimon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environmental Science and Pollution Research International200613(4): 225–232

[16]

Hall SBradley TMoore J TKuykindall TMinella L. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology20093(2): 91–97

[17]

Reeves J FDavies S JDodd N J FJha A N. Hydroxyl radicals (﹒OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutation Research2008640(1–2): 113–122

[18]

Dodd N J FJha A N. Titanium dioxide induced cell damage: a proposed role of the carboxyl radical. Mutation Research2009660(1–2): 79–82

[19]

Lovern S BKlaper RDaphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environmental Toxicology and Chemistry200625(4): 1132–1137

[20]

Clemente ZCastro V LJonsson C MFraceto L F. Ecotoxicology of nano-TiO2 —An evaluation of its toxicity to organisms of aquatic ecosystems. International Journal of Environmental of Research20126(1): 33–50

[21]

Paixão S MSilva LFernandes AO’Rourke KMendonça EPicado A. Performance of a miniaturized algal bioassay in phytotoxicity screening. Ecotoxicology200817(3): 165–171

[22]

Martoja RMartoja-Pierson M. Initiation aux techniques de l'histologie animale. R. Martoja et M. Martoja-Pierson, Masson, 1967, Paris

[23]

Habig W HPabst M JJakoby W B. Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry1974249(22): 7130–7139

[24]

Banan Khojasteh S MSheikhzadeh FMohammadnejad DAzami A. Histological, histochemical and ultrastructural study of the intestine of rainbow trout (Oncorhynchus mykiss). World Applied Sciences Journal20096(11): 1525–1531

[25]

Delashoub MPousty IBanan Khojasteh S M. Histology of bighead carp (Hypophthalmichthys nobilis) intestine. Global Veterinaria20105(6): 302–306

[26]

Clément LHurel CMarmier N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants- effects of size and crystalline structure. Chemosphere201390(3): 1083–1090

[27]

Sharma V K. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment — A review. Journal of Environmental Science and Health, Part A200944(14): 1485–1495

[28]

Menard ADrobne DJemec A. Ecotoxicity of nanosized TiO2. Review of in vivo data. Environmental Pollution2011159(3): 677–684

[29]

Kim EKim S HKim H CLee S GLee S JJeong S W. Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicology and Environmental Health Science20113(1): 1–6

[30]

Slatinská ISmutná MHavelková MSvobodová Z. Review article: biochemical markers of aquatic pollution in fish— Glutathione S-Transferase. Folia Veterinaria200852(3–4): 129–134

[31]

Yi XDing HLu YLiu HZhang MJiang W. Effects of long-term alachlor exposure on hepatic antioxidant defense and detoxifying enzyme activities in crucian carp (Carassius auratus). Chemosphere200768(8): 1576–1581

[32]

Xiong DFang TYu LSima XZhu W. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment2011409(8): 1444–1452

[33]

Zhang XSun HZhang ZNiu QChen YCrittenden J C. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere200767(1): 160–166

[34]

Federici GShaw B JHandy R D. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology200784(4): 415–430

[35]

Handy R DOwen RValsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology200817(5): 315–325

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1249KB)

2857

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/