A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles

Ana PICADO, Susana M. PAIXÃO, Liliana MOITA, Luis SILVA, Mário S. DINIZ, Joana LOURENÇO, Isabel PERES, Luisa CASTRO, José Brito CORREIA, Joana PEREIRA, Isabel FERREIRA, António Pedro Alves MATOS, Pedro BARQUINHA, Elsa MENDONCA

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 793-803.

PDF(1249 KB)
Front. Environ. Sci. Eng. All Journals
PDF(1249 KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 793-803. DOI: 10.1007/s11783-015-0775-0
RESEARCH ARTICLE
RESEARCH ARTICLE

A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles

Author information +
History +

Abstract

The new properties of engineered nanoparticles drive the need for new knowledge on the safety, fate, behavior and biologic effects of these particles on organisms and ecosystems. Titanium dioxide nanoparticles have been used extensively for a wide range of applications, e.g, self-cleaning surface coatings, solar cells, water treatment agents, topical sunscreens. Within this scenario increased environmental exposure can be expected but data on the ecotoxicological evaluation of nanoparticles are still scarce. The main purpose of this work was the evaluation of effects of TiO2 nanoparticles in several organisms, covering different trophic levels, using a battery of aquatic assays. Using fish as a vertebrate model organism tissue histological and ultrastructural observations and the stress enzyme activity were also studied. TiO2 nanoparticles (Aeroxide® P25), two phase composition of anatase (65%) and rutile (35%) with an average particle size value of 27.6±11 nm were used. Results on the EC50 for the tested aquatic organisms showed toxicity for the bacteria, the algae and the crustacean, being the algae the most sensitive tested organism. The aquatic plant Lemna minor showed no effect on growth. The fish Carassius auratus showed no effect on a 21 day survival test, though at a biochemical level the cytosolic Glutathione-S-Transferase total activity, in intestines, showed a general significant decrease (p<0.05) after 14 days of exposure for all tested concentrations. The presence of TiO2 nanoparticles aggregates were observed in the intestine lumen but their internalization by intestine cells could not be confirmed.

Keywords

ecotoxicity / enzymatic analysis / histology / transmission electron microscopy (TEM) / TiO2-nanoparticles

Cite this article

Download citation ▾
Ana PICADO, Susana M. PAIXÃO, Liliana MOITA, Luis SILVA, Mário S. DINIZ, Joana LOURENÇO, Isabel PERES, Luisa CASTRO, José Brito CORREIA, Joana PEREIRA, Isabel FERREIRA, António Pedro Alves MATOS, Pedro BARQUINHA, Elsa MENDONCA. A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles. Front. Environ. Sci. Eng., 2015, 9(5): 793‒803 https://doi.org/10.1007/s11783-015-0775-0
This is a preview of subscription content, contact us for subscripton.

References

[1]
Schmid G. Nanoparticles: From Theory to Application. Weinheim, Germany: Wiley-VCH, 2010
[2]
Kalantzi O I, Biskos G. Methods for assessing basic particle properties and cytotoxicity of engineered nanoparticles. Toxics, 2014, 2(1): 79–91
CrossRef Google scholar
[3]
Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959
CrossRef Pubmed Google scholar
[4]
Dalai S, Pakrashi S, Chandrasekaran N, Mukherjee A. Acute toxicity of TiO2 nanoparticles to Ceriodaphnia dubia under visible light and dark conditions in a freshwater system. PLoS ONE, 2013, 8(4): e62970
CrossRef Pubmed Google scholar
[5]
Liu X, Chen G, Su C. Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phase. Journal of Colloid and Interface Science, 2011, 363(1): 84–91
CrossRef Pubmed Google scholar
[6]
Moore M N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 2006, 32(8): 967–976
CrossRef Pubmed Google scholar
[7]
Kahru A, Dubourguier H C. From ecotoxicology to nanoecotoxicology. Toxicology, 2010, 269(2–3): 105–119
CrossRef Pubmed Google scholar
[8]
Warheit D B, Hoke R A, Finlay C, Donner E M, Reed K L, Sayes C M. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicology Letters, 2007, 171(3): 99–110
CrossRef Pubmed Google scholar
[9]
Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, Landsiedel R. Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere, 2009, 76(10): 1356–1365
CrossRef Pubmed Google scholar
[10]
Zhu X, Zhu L, Chen Y, Tian S. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. Journal of Nanoparticle Research, 2009, 11(1): 67–75
CrossRef Google scholar
[11]
Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 2010, 78(3): 209–215
CrossRef Pubmed Google scholar
[12]
Heinlaan M, Ivask A, Blinova I, Dubourguier H C, Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008, 71(7): 1308–1316
CrossRef Pubmed Google scholar
[13]
Blaise C, Gagné F, Férard J F, Eullaffroy P. Ecotoxicity of selected nano-materials to aquatic organisms. Environmental Toxicology, 2008, 23(5): 591–598
CrossRef Pubmed Google scholar
[14]
Aruoja V, Dubourguier H C, Kasemets K, Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 2009, 407(4): 1461–1468
CrossRef Pubmed Google scholar
[15]
Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environmental Science and Pollution Research International, 2006, 13(4): 225–232
CrossRef Pubmed Google scholar
[16]
Hall S, Bradley T, Moore J T, Kuykindall T, Minella L. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology, 2009, 3(2): 91–97
CrossRef Google scholar
[17]
Reeves J F, Davies S J, Dodd N J F, Jha A N. Hydroxyl radicals (﹒OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutation Research, 2008, 640(1–2): 113–122
CrossRef Pubmed Google scholar
[18]
Dodd N J F, Jha A N. Titanium dioxide induced cell damage: a proposed role of the carboxyl radical. Mutation Research, 2009, 660(1–2): 79–82
CrossRef Pubmed Google scholar
[19]
Lovern S B, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environmental Toxicology and Chemistry, 2006, 25(4): 1132–1137
CrossRef Pubmed Google scholar
[20]
Clemente Z, Castro V L, Jonsson C M, Fraceto L F. Ecotoxicology of nano-TiO2 —An evaluation of its toxicity to organisms of aquatic ecosystems. International Journal of Environmental of Research, 2012, 6(1): 33–50
[21]
Paixão S M, Silva L, Fernandes A, O’Rourke K, Mendonça E, Picado A. Performance of a miniaturized algal bioassay in phytotoxicity screening. Ecotoxicology, 2008, 17(3): 165–171
CrossRef Pubmed Google scholar
[22]
Martoja R, Martoja-Pierson M. Initiation aux techniques de l'histologie animale. R. Martoja et M. Martoja-Pierson, Masson, 1967, Paris
[23]
Habig W H, Pabst M J, Jakoby W B. Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 1974, 249(22): 7130–7139
Pubmed
[24]
Banan Khojasteh S M, Sheikhzadeh F, Mohammadnejad D, Azami A. Histological, histochemical and ultrastructural study of the intestine of rainbow trout (Oncorhynchus mykiss). World Applied Sciences Journal, 2009, 6(11): 1525–1531
[25]
Delashoub M, Pousty I, Banan Khojasteh S M. Histology of bighead carp (Hypophthalmichthys nobilis) intestine. Global Veterinaria, 2010, 5(6): 302–306
[26]
Clément L, Hurel C, Marmier N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants- effects of size and crystalline structure. Chemosphere, 2013, 90(3): 1083–1090
CrossRef Pubmed Google scholar
[27]
Sharma V K. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment — A review. Journal of Environmental Science and Health, Part A, 2009, 44(14): 1485–1495
[28]
Menard A, Drobne D, Jemec A. Ecotoxicity of nanosized TiO2. Review of in vivo data. Environmental Pollution, 2011, 159(3): 677–684
CrossRef Pubmed Google scholar
[29]
Kim E, Kim S H, Kim H C, Lee S G, Lee S J, Jeong S W. Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicology and Environmental Health Science, 2011, 3(1): 1–6
CrossRef Google scholar
[30]
Slatinská I, Smutná M, Havelková M, Svobodová Z. Review article: biochemical markers of aquatic pollution in fish— Glutathione S-Transferase. Folia Veterinaria, 2008, 52(3–4): 129–134
[31]
Yi X, Ding H, Lu Y, Liu H, Zhang M, Jiang W. Effects of long-term alachlor exposure on hepatic antioxidant defense and detoxifying enzyme activities in crucian carp (Carassius auratus). Chemosphere, 2007, 68(8): 1576–1581
CrossRef Pubmed Google scholar
[32]
Xiong D, Fang T, Yu L, Sima X, Zhu W. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 2011, 409(8): 1444–1452
CrossRef Pubmed Google scholar
[33]
Zhang X, Sun H, Zhang Z, Niu Q, Chen Y, Crittenden J C. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere, 2007, 67(1): 160–166
CrossRef Pubmed Google scholar
[34]
Federici G, Shaw B J, Handy R D. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology, 2007, 84(4): 415–430
CrossRef Pubmed Google scholar
[35]
Handy R D, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 2008, 17(5): 315–325
CrossRef Pubmed Google scholar

Acknowledgements

This work was funded by FCT–Fundação para a Ciência e a Tecnologia (PTDC/CTM/099446/2008). Authors would like to thank Nanosight for suspensions analysis.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1249 KB)

Supplementary files

FSE-17026-OF-LJW_suppl_1 (1258 KB)

Accesses

Citations

Detail

Sections
Recommended

/