Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse

Xinwei LI , Hanchang SHI , Kuixiao LI , Liang ZHANG

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 1076 -1083.

PDF (398KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 1076 -1083. DOI: 10.1007/s11783-015-0770-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse

Author information +
History +
PDF (398KB)

Abstract

The effluent of a wastewater treatment plant was treated in a pilot plant for reclaimed water production through the denitrification biofilter (DNBF) process, ozonation (O3), and biologic aerated filtration (BAF). The combined process demonstrated good removal performance of conventional pollutants, including concentrations of chemical oxygen demand (27.8 mg·L−1) and total nitrogen (9.9 mg·L−1) in the final effluent, which met the local discharge standards and water reuse purposes. Micropollutants (e.g., antibiotics and endocrine-disrupting chemicals) were also significantly removed during the proposed process. Ozonation exhibited high antibiotic removal efficiencies, especially for tetracycline (94%). However, micropollutant removal efficiency was negatively affected by the nitrite produced by DNBF. Acute toxicity variations of the combined process were estimated by utilizing luminescent bacteria. Inhibition rate increased from 9% to 15% during ozonation. Carbonyl compound concentrations (e.g., aldehydes and ketones) also increased by 58% as by-products, which consequently increased toxicity. However, toxicity eventually became as low as that of the influent because the by-products were effectively removed by BAF. The combined DNBF/O3/BAF process is suitable for the advanced treatment of reclaimed water because it can thoroughly remove pollutants and toxicity.

Keywords

wastewater treatment / micropollutant removal / ozonation / biofiltration / toxicity

Cite this article

Download citation ▾
Xinwei LI, Hanchang SHI, Kuixiao LI, Liang ZHANG. Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse. Front. Environ. Sci. Eng., 2015, 9(6): 1076-1083 DOI:10.1007/s11783-015-0770-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bdour A NHamdi M RTarawneh Z. Perspectives on sustainable wastewater treatment technologies and reuse options in the urban areas of the mediterranean region. Desalination2009237(1–3): 162–174

[2]

Bednarek ASzklarek SZalewski M. Nitrogen pollution removal from areas of intensive farming—Comparison of various denitrification biotechnologies. Ecohydrology & Hydrobiology201414(2): 132–141

[3]

Liu MZhang YYang MTian ZRen LZhang S. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environmental Science & Technology201246(14): 7551–7557

[4]

Zhou L JYing G GLiu SZhao J LYang BChen Z FLai H J. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Science of the Total Environment2013452–453: 365–376

[5]

Huang M HLi Y MGu G W. Toxicity reduction of municipal wastewater by anaerobic-anoxic-oxic process. Biomedical and Environmental Sciences201023(6): 481–486

[6]

Huber M MKorhonen STernes T Avon Gunten U. Oxidation of pharmaceuticals during water treatment with chlorine dioxide. Water Research200539(15): 3607–3617

[7]

Lee Yvon Gunten U. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical). Water Research201044(2): 555–566

[8]

Gilbert YLe Bihan YAubry GVeillette MDuchaine CLessard P. Microbiological and molecular characterization of denitrification in biofilters treating pig manure. Bioresource Technology200899(10): 4495–4502

[9]

Zhang LZhang SWang SWu CChen YWang YPeng Y. Enhanced biological nutrient removal in a simultaneous fermentation, denitrification and phosphate removal reactor using primary sludge as internal carbon source. Chemosphere201391(5): 635–640

[10]

Nakada NShinohara HMurata AKiri KManagaki SSato NTakada H. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research200741(19): 4373–4382

[11]

Yang Z DLv A HNie Y LHu C. Catalytic ozonation performance and surface property of supported Fe3O4 catalysts dispersions. Frontiers of Environmental Science & Engineering20137(3): 451–456

[12]

Oller IMalato SSánchez-Pérez J A. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment2011409(20): 4141–4166

[13]

Cui J QWang X JYuan Y LGuo X WGu X YJian L. Combined ozone oxidation and biological aerated filter processes for treatment of cyanide containing electroplating wastewater. Chemical Engineering Journal2014241: 184–189

[14]

Lotito A MFratino UBergna GDi Iaconi C. Integrated biological and ozone treatment of printing textile wastewater. Chemical Engineering Journal2012195: 261–269

[15]

Rosal RRodríguez APerdigón-Melón J APetre AGarcía-Calvo EGómez M JAgüera AFernández-Alba A R. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research201044(2): 578–588

[16]

Lee C OHowe K JThomson B M. Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wastewater. Water Research201246(4): 1005–1014

[17]

APHA. Standard methods for the examination for water and wastewater. 21th ed. Washington, D C: American Public Health Association, 2005

[18]

Li X WShi H CLi K XZhang LGan Y P. Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Frontiers of Environmental Science & Engineering20148(6): 888–894

[19]

Chang HWan YNaile JZhang XWiseman SHecker MLam M H WGiesy J PJones P D. Simultaneous quantification of multiple classes of phenolic compounds in blood plasma by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography. A20101217(4): 506–513

[20]

Yu XZuo JTang XLi RLi ZZhang F. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri. Journal of Hazardous Materials2014266: 68–74

[21]

Ge SPeng YWang SLu CCao XZhu Y. Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO3-N. Bioresource Technology2012114: 137–143

[22]

Huber M MGöbel AJoss AHermann NLöffler DMcArdell C SRied ASiegrist HTernes T Avon Gunten U. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environmental Science & Technology200539(11): 4290–4299

[23]

Ternes T AStüber JHerrmann NMcDowell DRied AKampmann MTeiser B. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Research200337(8): 1976–1982

[24]

Dodd M CBuffle M OVon Gunten U. Oxidation of antibacterial molecules by aqueous ozone: moiety-specific reaction kinetics and application to ozone-based wastewater treatment. Environmental Science & Technology200640(6): 1969–1977

[25]

Huber M MCanonica SPark G Yvon Gunten U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science & Technology200337(5): 1016–1024

[26]

Zhang HYamada HTsuno H. Removal of endocrine-disrupting chemicals during ozonation of municipal sewage with brominated byproducts control. Environmental Science & Technology200842(9): 3375–3380

[27]

Ho LGrasset CHoefel DDixon M BLeusch F DNewcombe GSaint C PBrookes J D. Assessing granular media filtration for the removal of chemical contaminants from wastewater. Water Research201145(11): 3461–3472

[28]

Coleman W EMunch J WRinghand H PKaylor W HMitchell D E. Ozonation/post-chlorination of humic acid: a model for predicting drinking water disinfection by-products. Ozone Science and Engineering199214(1): 51–69

[29]

Mezzanotte VFornaroli RCanobbio SZoia LOrlandi M. Colour removal and carbonyl by-production in high dose ozonation for effluent polishing. Chemosphere201391(5): 629–634

[30]

Wert E CRosario-Ortiz F LDrury D DSnyder S A. Formation of oxidation byproducts from ozonation of wastewater. Water Research200741(7): 1481–1490

[31]

Tripathi SPathak VTripathi D MTripathi B D. Application of ozone based treatments of secondary effluents. Bioresource Technology2011102(3): 2481–2486

[32]

Reungoat JEscher B IMacova MArgaud F XGernjak WKeller J. Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Research201246(3): 863–872

[33]

Prieto-Rodríguez LOller IKlamerth NAgüera ARodríguez E MMalato S. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Research201347(4): 1521–1528

[34]

von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research200337(7): 1443–1467

[35]

Lee YKovalova LMcArdell C Svon Gunten U. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Research201464: 134–148

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (398KB)

Supplementary files

Supplementary Material

2701

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/