Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar

Fenglin LIU , Jiane ZUO , Tong CHI , Pei WANG , Bo YANG

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 1066 -1075.

PDF (1455KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 1066 -1075. DOI: 10.1007/s11783-015-0769-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar

Author information +
History +
PDF (1455KB)

Abstract

Iron-modified corn straw biochar was used as an adsorbent to remove phosphorus from agricultural runoff. When agricultural runoffs with a total phosphorus (TP) concentration of 1.86 mg·L−1 to 2.47 mg·L−1 were filtered at a hydraulic retention time of 2 h through a filtration column packed with the modified biochar, a TP removal efficiency of over 99% and an effluent TP concentration of less than 0.02 mg·L−1 were achieved. The isotherms of the phosphorus adsorption by the modified biochar fitted the Freundlich equation better than the Langmuir equation. The mechanism of the phosphorus adsorbed by the modified biochar was analyzed by using various technologies, i.e. scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the surface of the modified biochar was covered by small iron granules, which were identified as Fe3O4. The results also showed that new iron oxides were formed on the surface of the modified biochar after the adsorption of phosphorus. Moreover, new bonds of Fe-O-P and P-C were found, which suggested that the new iron oxides tend to be Fe5(PO4)4(OH)3. Aside from removing phosphorus, adding the modified biochar into soil also improved soil productivity. When the modified biochar-to-soil rate was 5%, the stem, root, and bean of broad bean plants demonstrated increased growth rates of 91%, 64%, and 165%, respectively.

Keywords

iron-modified biochar / phosphorus removal / agricultural waste / agricultural runoff

Cite this article

Download citation ▾
Fenglin LIU, Jiane ZUO, Tong CHI, Pei WANG, Bo YANG. Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar. Front. Environ. Sci. Eng., 2015, 9(6): 1066-1075 DOI:10.1007/s11783-015-0769-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu YHu ZYang LGraham BKerr P G. The removal of nutrients from non-point source wastewater by a hybrid bioreactor. Bioresource Technology2011102(3): 2419–2426

[2]

Wang X DZhang S SLiu S LChen J W. A two-dimensional numerical model for eutrophication in Baiyangdian Lake. Frontiers of Environmental Science & Engineering2012(6): 815–824

[3]

Li LLi YBiswas D KNian YJiang G. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource Technology200899(6): 1656–1663

[4]

Gan LZuo JXie BLi PHuang X. Zeolite (Na) modified by nano-Fe particles adsorbing phosphate in rainwater runoff. Journal of Environmental Sciences-China201224(11): 1929–1933

[5]

Xie JZhang X YXu Z WYuan G FTang X ZSun X MBallantine D J. Total phosphorus concentrations in surface water of typical agro- and forest ecosystems in China, 2004–2010. Frontiers of Environmental Science & Engineering2014(4): 561–569

[6]

Correll D L. The role of phosphorus in the eutrophication of receiving waters: A review. Journal of Environmental Quality199827(2): 261–266

[7]

Schauser IChorus IHeinzmann B. Strategy and current status of combating eutrophication in two Berlin lakes for safeguarding drinking water resources. Water science and technology200654(11): 93–100

[8]

de-Bashan L EBashan Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research200438(19): 4222–4246

[9]

Jaffer YClark T APearce PParsons S A. Potential phosphorus recovery by struvite formation. Water Research200236(7): 1834–1842

[10]

Shanableh A MElsergany M M. Removal of phosphate from water using six Al-, Fe-, and Al-Fe-modified bentonite adsorbents. Journal of Environmental Science and Health, Part a—Toxic/Hazardous Substances & Environmental Engineering201348(2): 223–231

[11]

Posadas EGarcía-Encina P ASoltau ADomínguez ADíaz IMuñoz R. Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresource Technology2013139: 50–58

[12]

Li NRen N QWang X HKang H. Effect of temperature on intracellular phosphorus absorption and extra-cellular phosphorus removal in EBPR process. Bioresource Technology2010101(15): 6265–6268

[13]

Manyà J J. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environmental Science & Technology201246(15): 7939–7954

[14]

Zhang ABian RHussain QLi LPan GZheng JZhang XZheng J. Change in net global warming potential of a rice-wheat cropping system with biochar soil amendment in a rice paddy from China. Agriculture, Ecosystems & Environment2013173: 37–45

[15]

Lehmann J. Bio-energy in the black. Frontiers in Ecology and the Environment20075(7): 381–387

[16]

Lehmann J. A handful of carbon. Nature2007447(7141): 143–144

[17]

Inyang MGao BPullammanappallil PDing WZimmerman A R. Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology2010101(22): 8868–8872

[18]

Laird D A. The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal2008100(1): 178–181

[19]

Glaser BLehmann JZech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal- a review. Biology and Fertility of Soils200235(4): 219–230

[20]

Zhang MGao BVarnoosfaderani SHebard AYao YInyang M. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology2013130: 457–462

[21]

Hawn D DDekoven B M. Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surface and Interface Analysis198710(2–3): 63– 74

[22]

Muhler MSchlogl RErtl G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene. Journal of Catalysis1992138(2): 413–444

[23]

Yamashita THayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science2008254(8): 2441–2449

[24]

Sun Y PLi X QCao JZhang W XWang H P. Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science2006120(1–3): 47–56

[25]

Xie B MZuo J NGan L LLiu F LWang K J. Cation exchange resin supported nanoscale zero-valent ironfor removal of phosphorus in rainwater runoff. Frontiers of Environmental Science & Engineering2014(3): 463–470

[26]

Ismail H MCadenhead D AZaki M I. Surface reactivity of iron oxide pigmentary powders toward atmospheric components: XPS and gravimetry of oxygen and water vapor adsorption. Journal of Colloid and Interface Science1996183(2): 320–328

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1455KB)

4320

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/