Online single particle analysis of chemical composition and mixing state of crop straw burning particles: from laboratory study to field measurement

Juntao HUO , Xiaohui LU , Xinning WANG , Hong CHEN , Xingnan YE , Song Gao , Deborah S. Gross , Jianmin CHEN , Xin YANG

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 244 -252.

PDF (471KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 244 -252. DOI: 10.1007/s11783-015-0768-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Online single particle analysis of chemical composition and mixing state of crop straw burning particles: from laboratory study to field measurement

Author information +
History +
PDF (471KB)

Abstract

Fresh straw burning (SB) particles were generated in the laboratory by the combustion of rice straw and corn straw. The chemical composition and mixing state of the fresh SB particles were investigated by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS). Based on the mass spectral patterns, the SB particles were clustered into four major types: Salt, Organic Carbon (OC), Elemental Carbon (EC), and internally mixed particles of EC and OC (EC-OC). In addition, particles containing ash, polycyclic aromatic hydrocarbons, heavy metals or nicotine were also observed. Physical and chemical changes of the SB particles immediately after the emission were analyzed with highly time-resolved data. During the aging processes, the average particle size increased steadily. Freshly emitted organic compounds were gradually oxidized to more oxygenated compounds in the OC-containing particles. Meanwhile, an important displacement reaction (2KCl+ SO42→ K2SO4 + 2Cl) was observed. The marker ions for SB particles were optimized and applied to identify the SB particles in the ambient atmosphere. The fluctuation of the number fraction of ambient SB particles sorted by ATOFMS agrees well with that of water soluble K+ measured by an online ion chromatography, demonstrating that the optimized marker ions could be good tracers for SB particles in field measurements.

Keywords

crop straw burning particles / mixing state / aging process / ATOFMS / ion markers

Cite this article

Download citation ▾
Juntao HUO, Xiaohui LU, Xinning WANG, Hong CHEN, Xingnan YE, Song Gao, Deborah S. Gross, Jianmin CHEN, Xin YANG. Online single particle analysis of chemical composition and mixing state of crop straw burning particles: from laboratory study to field measurement. Front. Environ. Sci. Eng., 2016, 10(2): 244-252 DOI:10.1007/s11783-015-0768-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Crutzen P JAndreae M O. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science1990250(4988): 1669–1678

[2]

Hobbs P VReid J SKotchenruther R AFerek R JWeiss R. Direct radiative forcing by smoke from biomass burning. Science1997275(5307): 1776–1778

[3]

Watson J G. Visibility: science and regulation. Journal of the Air & Waste Management Association200252(6): 628–713

[4]

Streets D GYarber K FWoo J HCarmichael G R. Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles200317(4): 1099 

[5]

Gadde BBonnet SMenke CGarivait S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution2009157(5): 1554–1558

[6]

Ryu S YKim J EZhuanshi HKim Y JKang G U. Chemical composition of post-harvest biomass burning aerosols in Gwangju, Korea. Journal of the Air & Waste Management Association200454(9): 1124–1137 doi:10.1080/10473289.2004.10471018

[7]

Zhang H FYe X NCheng T TChen J MYang XWang LZhang R Y. A laboratory study of agricultural crop residue combustion in China: emission factors and emission inventory. Atmospheric Environment200842(36): 8432–8441

[8]

Cao G LZhang X YWang Y QZheng F C. Estimation of emissions from field burning of crop straw in China. Chinese Science Bulletin200853(5): 784–790

[9]

Qin YXie S D. Historical estimation of carbonaceous aerosol emissions from biomass open burning in China for the period 1990–2005. Environmental Pollution2011159(12): 3316–3323

[10]

Li XWang SDuan LHao JLi CChen YYang L. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environmental Science & Technology200741(17): 6052–6058

[11]

Reid J SKoppmann REck T FEleuterio D P. A review of biomass burning emissions, Part II: Intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics20055(3): 799–825

[12]

Healy R MHellebust SKourtchev IAllanic AO'Connor I PBell J MHealy D ASodeau J RWenger J C. Source apportionment of PM2.5 in Cork Harbour, Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements. Atmospheric Chemistry and Physics201010(19): 9593–9613

[13]

Zauscher M DWang YMoore M J KGaston C JPrather K A. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires. Environmental Science & Technology201347(14): 7633–7643

[14]

Pratt K AMurphy S MSubramanian RDeMott P JKok G LCampos TRogers D CPrenni A JHeymsfield A JSeinfeld J HPrather K A. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. Atmospheric Chemistry and Physics201111(24): 12549–12565

[15]

Prather K ANordmeyer TSalt K. Real-time characterization of individual aerosol-particles using time-of-flight mass-spectrometry. Analytical Chemistry199466(9): 1403–1407

[16]

Yang FChen HWang X NYang XDu J FChen J M. Single particle mass spectrometry of oxalic acid in ambient aerosols in Shanghai: mixing state and formation mechanism. Atmospheric Environment200943(25): 3876–3882

[17]

Wang XWilliams B J, Wang X, Tang YHuang YKong LYang XBiswas P. Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace. Atmospheric Chemistry and Physics201313(21): 10919–10932

[18]

Bi X HZhang G HLi LWang X MLi MSheng G YFu J MZhou Z. Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China. Atmospheric Environment201145(20): 3447–3453

[19]

Silva P JLiu D YNoble C APrather K A. Size and chemical characterization of individual particles resulting from biomass burning of local Southern California species. Environmental Science & Technology199933(18): 3068–3076

[20]

Pagels JDutcher D DStolzenburg M RMcMurry P HGälli M EGross D S. Fine-particle emissions from solid biofuel combustion studied with single-particle mass spectrometry: Identification of markers for organics, soot, and ash components. Journal of Geophysical Research, D, Atmospheres2013118(2): 859–870

[21]

Song X HHopke P KFergenson D PPrather K A. Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A. Analytical Chemistry199971(4): 860–865

[22]

Gao SHegg D AHobbs P VKirchstetter T WMagi B ISadilek M. Water-soluble organic components in aerosols associated with savanna fires in southern Africa: identification, evolution, and distribution. Journal of Geophysical Research, D, Atmospheres2003108(D13): 8491

[23]

McMeeking G RKreidenweis S MBaker SCarrico C MChow J CCollett J LHao W MHolden A SKirchstetter T WMalm W CMoosmuller HSullivan A PWold C E. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. Journal of Geophysical Research, D, Atmospheres2009114: D19210

[24]

Hudson P KMurphy D MCziczo D JThomson D Sde Gouw J AWarneke CHolloway JJost J RHubler G. Biomass-burning particle measurements: characteristic composition and chemical processing. Journal of Geophysical Research, D, Atmospheres2004109(D23): D23S27

[25]

Pósfai MSimonics RLi JHobbs P VBuseck P R. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. Journal of Geophysical Research, D, Atmospheres2003108(D13): 8483

[26]

Kulmala MDal Maso MMäkelä J MPirjola LVäkevä MAalto PMiikkulainen PHämeri KO'Dowd C D. On the formation, growth and composition of nucleation mode particles. Tellus. Series B, Chemical and Physical Meteorology200153(4): 479–490

[27]

Hennigan C JSullivan A PCollett J L Jr, Robinson A L. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophysical Research Letters201037(9): L09806

[28]

Kessler S HSmith J DChe D LWorsnop D RWilson K RKroll J H. Chemical sinks of organic aerosol: kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan. Environmental Science & Technology201044(18): 7005–7010

[29]

Li JPósfai MHobbs P VBuseck P R. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research, D, Atmospheres2003108(D13): 8484

[30]

Reid J SHobbs P V. Physical and optical properties of young smoke from individual biomass fires in Brazil. Journal of Geophysical Research, D, Atmospheres1998103(D24): 32013–32030

[31]

Kreidenweis S MRemer L ABruintjes RDubovik O. Smoke aerosol from biomass burning in Mexico: hygroscopic smoke optical model. Journal of Geophysical Research, D, Atmospheres2001106(D5): 4831–4844

[32]

Yokelson R JCrounse J DDeCarlo P FKarl TUrbanski SAtlas ECampos TShinozuka YKapustin VClarke A DWeinheimer AKnapp D JMontzka D DHolloway JWeibring PFlocke FZheng WToohey DWennberg P OWiedinmyer CMauldin LFried ARichter DWalega JJimenez J LAdachi KBuseck P RHall S RShetter R. Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics20099(15): 5785–5812

[33]

Pekney N JDavidson C IBein K JWexler A SJohnston M V. Identification of sources of atmospheric PM at the Pittsburgh Supersite, Part I: Single particle analysis and filter-based positive matrix factorization. Atmospheric Environment200640(Suppl. 2): 411–423

[34]

Bein K JZhao YJohnston M VWexler A S. Identification of sources of atmospheric PM at the Pittsburgh Supersite—Part III: Source characterization. Atmospheric Environment200741(19): 3974–3992

[35]

Du HKong LCheng TChen JDu JLi LXia XLeng CHuang G. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmospheric Environment201145(29): 5131–5137

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (471KB)

Supplementary files

Supplementary Material

2896

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/