Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge

Liangliang WEI , Kun WANG , Xiangjuan KONG , Guangyi LIU , Shuang CUI , Qingliang ZHAO , Fuyi CUI

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 327 -335.

PDF (1101KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 327 -335. DOI: 10.1007/s11783-014-0763-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge

Author information +
History +
PDF (1101KB)

Abstract

A novel method was applied to co-recover proteins and humic acid from the dewatered sewage sludge for liquid fertilizer and animal feed. The proteins in sewage sludge were first extracted using the processes of ultra-sonication and acid precipitation, and then the humic acid was recovered via membrane filtration. The extraction efficiency was 125.9 mg humic acid∙g−1VSS volatile suspended solids (VSS) and 123.9 mg proteins∙g−1 VSS at the optimal ultrasonic density of 1.5 W∙mL−1. FT-IR spectrum results indicated that the recovered proteins and humic acid showed similar chemical characteristic to the natural proteins and humic acid. The acidic solution (pH 2) could be recycled and used more than 10 times during the co-recovery processes. In addition, the dewatered sludge could be easily biodegraded when the humic acid and proteins are extracted, which was essential for further utilization. These findings are of great significance for recovering valuable nutrient from sewage sludge.

Keywords

sewage sludge / co-recovery / proteins / humic acid / recycling / biodegradation rate

Cite this article

Download citation ▾
Liangliang WEI, Kun WANG, Xiangjuan KONG, Guangyi LIU, Shuang CUI, Qingliang ZHAO, Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge. Front. Environ. Sci. Eng., 2016, 10(2): 327-335 DOI:10.1007/s11783-014-0763-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sheng G PYu H Q. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research200640(6): 1233–1239

[2]

Lin H JXie KMahendran BBagley D MLeung K TLiss S NLiao B Q. Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs). Water Research200943(15): 3827–3837

[3]

Girones RFerrús M AAlonso J LRodriguez-Manzano JCalgua BCorrêa A AHundesa ACarratala ABofill-Mas S. Molecular detection of pathogens in water—The pros and cons of molecular techniques. Water Research201044(15): 4325–4339

[4]

Petzet SPeplinski BCornel P. On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Research201246(12): 3769–3780

[5]

Hwang JZhang LSeo SLee Y WJahng D. Protein recovery from excess sludge for its use as animal feed. Bioresource Technology200899(18): 8949–8954

[6]

Zhang PZhang GWang W. Ultrasonic treatment of biological sludge: floc disintegration, cell lysis and inactivation. Bioresource Technology200798(1): 207–210

[7]

Wei L LWang KZhao Q LJiang J QKong X JLee D J. Fractional, biodegradable and spectral characteristics of extracted and fractionated sludge extracellular polymeric substances. Water Research201246(14): 4387–4396

[8]

Nielsen P HFrølund BKeiding K. Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage. Applied Microbiology and Biotechnology199644(6): 823–830

[9]

Wei L LZhao Q LHu KLee D JXie C MJiang J Q. Extracellular biological organic matters in sewage sludge during mesophilic digestion at reduced hydraulic retention time. Water Research201145(3): 1472–1480

[10]

Ni B JZeng R JFang FXu JSheng G PYu H Q. A novel approach to evaluate the production kinetics of extracellular polymeric substances (EPS) by activated sludge using weighted nonlinear least-squares analysis. Environmental Science & Technology200943(10): 3743–3750

[11]

Fonseca A CSummers R SGreenberg A RHernandez M T. Extra-cellular polysaccharides, soluble microbial products, and natural organic matter impact on nanofiltration membranes flux decline. Environmental Science & Technology200741(7): 2491–2497

[12]

Monique RElisabeth G NEtienne PDominique L. A high yield multi-method extraction protocol for protein quantification in activated sludge. Bioresource Technology200899(16): 7464–7471

[13]

Jung JXing X HMatsumoto K. Recoverability of protease released from disrupted excess sludge and its potential application to enhanced hydrolysis of proteins in wastewater. Biochemical Engineering Journal200210(1): 67–72

[14]

Adebayo O TFagbenro O AJegede T. Evaluation of Cassia fistula meal as a replacement for soybean meal in practical diets of Oreochromis niloticus fingerlings. Aquaculture Nutrition200410(2): 99–104

[15]

Jiang JZhao QWei LWang KLee D J. Degradation and characteristic changes of organic matter in sewage sludge using microbial fuel cell with ultrasound pretreatment. Bioresource Technology2011102(1): 272–277

[16]

Nakakubo TTokai AOhno K. Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery. Journal of Cleaner Production201232: 157–172

[17]

Li HJin YNie Y. Application of alkaline treatment for sludge decrement and humic acid recovery. Bioresource Technology2009100(24): 6278–6283

[18]

Dignac M FUrbain VRybacki DBruchet ASnidaro DScribe P. Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Science and Technology199838(8-9): 45–53

[19]

Ni B JFang FXie W MXu JYu H Q. Formation of distinct soluble microbial products by activated sludge: kinetic analysis and quantitative determination. Environmental Science & Technology201246(3): 1667–1674

[20]

Souza T SHencklein F AAngelis D FGonçalves R AFontanetti C S. The Allium cepa bioassay to evaluate landfarming soil, before and after the addition of rice hulls to accelerate organic pollutants biodegradation. Ecotoxicology and Environmental Safety200972(5): 1363–1368

[21]

Balba M TAl-Awadhi NAl-Daher RHeitzer A. Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods199832(2): 155–164

[22]

APHA. AWWA, WEF. Standard Methods for the Examination of Water and Wastewater, 21th ed, APHA, Washington, DC, 2005

[23]

Frølund BGriebe TNielsen P H. Enzymatic activity in the activated-sludge floc matrix. Applied Microbiology and Biotechnology199543(4): 755–761

[24]

Sahinkaya S. Disintegration of municipal waste activated sludge by simultaneous combination of acid and ultrasonic pretreatment. Process Safety and Environmental Protection, available online <Date>April 18 2014</Date>: 

[25]

Cheng JXia ASu H BSong W LZhou J HCen K F. Promotion of H2 production by microwave-assisted treatment of water hyacinth with dilute H2SO4 through combined dark fermentation and photofermentation. Energy Conversion and Management201373: 329–334

[26]

Wang WLuo Y XQiao W. Possible solutions for sludge dewatering in China. Frontiers of Environmental Science & Engineering20104(1): 102–107

[27]

Wang Z WWu Z CYin XTian L M. Membrane fouling in a submerged membrane bioreactor (MBR) under subcritical flux operation: membrane foulant and gellayer characterization. Journal of Membrane Science2008325(1): 238–244

[28]

Wei L LZhao Q LXue SChang C CTang FLiang G LJia T. Reduction of trihalomethane precursors of dissolved organic matter in the secondary effluent by advanced treatment processes. Journal of Hazardous Materials2009169(1-3): 1012–1021

[29]

Pon-On WCharoenphandhu NTeerapornpuntakit JThongbunchoo JKrishnamra NTang I M. Physicochemical and biochemical properties of iron-loaded silicon substituted hydroxyapatite (FeSiHAp). Materials Chemistry and Physics2013141(2-3): 850–860

[30]

Maity J PKar SLin C MChen C YChang Y FJean J SKulp T R. Identification and discrimination of bacteria using Fourier transform infrared spectroscopy. Spectrochimica Acta Part A2013116: 478–484

[31]

Filip ZHerrmann SKubat J. FT-IR spectroscopic characteristics of differently cultivated Bacillus subtilis. Microbiological Research2004159(3): 257–262

[32]

Aiken G R. In: Aiken G RMeKnight D MWershaw R LMcCarthy P, ed. Humic Substances in Soil, Sediment, and Water. New York: John Wiley, 1985363

[33]

Selcuk HBekbolet M. Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO2 coated photoanode. Chemosphere200873(5): 854–858

[34]

Valdemar IMarta OArmando C. Comparative characterization of humic substances from the open ocean, estuarine water and fresh water. Organic Geochemistry200940(9): 942–950

[35]

Wei LWang KZhao QJiang JXie CQiu W. Organic matter extracted from activated sludge with ammonium hydroxide and its characterization. Journal of Environmental Sciences (China)201022(5): 641–647

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1101KB)

3630

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/