Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air

Pu ZHAO, Lizhong ZHU

PDF(508 KB)
PDF(508 KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 219-228. DOI: 10.1007/s11783-014-0760-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air

Author information +
History +

Abstract

Adsorption is the most widely used technology for the removal of indoor volatile organic compounds (VOCs). However, existing adsorbent-based technologies are inadequate to meet the regulatory requirement, due to their limited adsorption capacity and efficiency, especially under high relative humidity (RH) conditions. In this study, a series of new porous clay heterostructure (PCH) adsorbents with various ratios of micropores to mesopores were synthesized, characterized and tested for the adsorption of acetaldehyde and toluene. Two of them, PCH25 and PCH50, exhibited markedly improved adsorption capability, especially for hydrophilic acetaldehyde. The improved adsorption was attributed to their large micropore areas and high micropore-to-mesopore volume ratios. The amount of acetaldehyde adsorbed onto PCH25 at equilibrium reached 62.7 mg·g−1, eight times as much as the amount adsorbed onto conventional activated carbon (AC). Even at a high RH of 80%, PCH25 removed seven and four times more of the acetaldehyde than AC and the unmodified raw PCHs did, respectively. This new PCH optimized for their high adsorption and resistance to humidity has promising applications as a cost-effective adsorbent for indoor air purification.

Keywords

porous clay heterostructure / volatile organic compounds / adsorption / adsorbent / indoor air

Cite this article

Download citation ▾
Pu ZHAO, Lizhong ZHU. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air. Front. Environ. Sci. Eng., 2016, 10(2): 219‒228 https://doi.org/10.1007/s11783-014-0760-z

References

[1]
Clarisse B, Laurent A M, Seta N, Le Moullec Y, El Hasnaoui A, Momas I. Indoor aldehydes: measurement of contamination levels and identification of their determinants in Paris dwellings. Environmental Research, 2003, 92(3): 245–253
CrossRef Pubmed Google scholar
[2]
Weng M, Zhu L, Yang K, Chen S. Levels, sources, and health risks of carbonyls in residential indoor air in Hangzhou, China. Environmental Monitoring and Assessment, 2010, 163(1−4): 573–581
CrossRef Pubmed Google scholar
[3]
Guo H. Source apportionment of volatile organic compounds in Hong Kong homes. Building and Environment, 2011, 46(11): 2280–2286
CrossRef Google scholar
[4]
Du Z J, Mo J H, Zhang Y P, Xu Q J. Benzene, toluene and xylenes in newly renovated homes and associated health risk in Guangzhou, China. Building and Environment, 2014, 72: 75–81
CrossRef Google scholar
[5]
Lyu J Z, Zhu L Z, Burda C. Optimizing nanoscale TiO2 for adsorption-enhanced photocatalytic degradation of low-concentration air pollutants. Chemcatchem, 2013, 5(10): 3114–3123
CrossRef Google scholar
[6]
Chiang C Y, Liu Y Y, Chen Y S, Liu H S. Absorption of hydrophobic volatile organic compounds by a rotating packed bed. Industrial & Engineering Chemistry Research, 2012, 51(27): 9441–9445
CrossRef Google scholar
[7]
Lashaki M J, Fayaz M, Wang H H, Hashisho Z, Philips J H, Anderson J E, Nichols M. Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon. Environmental Science & Technology, 2012, 46(7): 4083–4090
CrossRef Pubmed Google scholar
[8]
Chen H M, He J H, Zhang C B, He H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. Journal of Physical Chemistry C, 2007, 111(49): 18033–18038
CrossRef Google scholar
[9]
Li L, Liu S, Liu J. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. Journal of Hazardous Materials, 2011, 192(2): 683–690
CrossRef Pubmed Google scholar
[10]
Nouri S, Haghseresht F. Adsorption of p-nitrophenol in untreated and treated activated carbon. Adsorption-Journal of the International Adsorption Society, 2004, 10(1): 79–86
CrossRef Google scholar
[11]
Cal M P, Rood M J, Larson S M. Removal of VOCs from humidified gas streams using activated carbon cloth. Gas Separation & Purification, 1996, 10(2): 117–121
CrossRef Google scholar
[12]
Chmielarz L, Kustrowski P, Piwowarska Z, Dudek B, Gil B, Michalik M. Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 2009, 88(3−4): 331–340
CrossRef Google scholar
[13]
Chmielarz L, Piwowarska Z, Kustrowski P, Gil B, Adamski A, Dudek B, Michalik M. Porous clay heterostructures (PCHs) intercalated with silica-titania pillars and modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 2009, 91(1−2): 449–459
CrossRef Google scholar
[14]
Pires J, Bestilleiro M, Pinto M, Gil A. Selective adsorption of carbon dioxide, methane and ethane by porous clays heterostructures. Separation and Purification Technology, 2008, 61(2): 161–167
CrossRef Google scholar
[15]
Pires J, Araújo A C, Carvalho A P, Pinto M L, González-Calbet J M, Ramírez-Castellanos J. Porous materials from clays by the gallery template approach: synthesis, characterization and adsorption properties. Microporous and Mesoporous Materials, 2004, 73(3): 175–180
CrossRef Google scholar
[16]
Santos C, Andrade M, Vieira A L, Martins A, Pires J, Freire C, Carvalho A P. Templated synthesis of carbon materials mediated by porous clay heterostructures. Carbon, 2010, 48(14): 4049–4056
CrossRef Google scholar
[17]
Nunes C D, Pires J, Carvalho A P, Calhorda M J, Ferreira P. Synthesis and characterisation of organo-silica hydrophobic clay hetero structures for volatile organic compounds removal. Microporous and Mesoporous Materials, 2008, 111(1−3): 612–619
CrossRef Google scholar
[18]
Qu F, Zhu L, Yang K. Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH). Journal of Hazardous Materials, 2009, 170(1): 7–12
CrossRef Pubmed Google scholar
[19]
Zhu H Y, Ding Z, Barry J C. Porous solids from layered clays by combined pillaring and templating approaches. Journal of Physical Chemistry B, 2002, 106(44): 11420–11429
CrossRef Google scholar
[20]
Hu X J, Qiao S Z, Zhao X S, Lu G Q. Adsorption study of benzene in ink-bottle-like MCM-41. Industrial & Engineering Chemistry Research, 2001, 40(3): 862–867
CrossRef Google scholar
[21]
Rege S U, Yang R T. Corrected Horváth-Kawazoe equations for pore-size distribution. AIChE Journal. American Institute of Chemical Engineers, 2000, 46(4): 734–750
CrossRef Google scholar
[22]
Wei L M, Tang T, Huang B T. Novel acidic porous clay heterostructure with highly ordered organic-inorganic hybrid structure: one-pot synthesis of mesoporous organosilica in the galleries of clay. Microporous and Mesoporous Materials, 2004, 67(2−3): 175–179
CrossRef Google scholar
[23]
Lippens B C, Deboer J H. Studies on Pore Systems In Catalysts: V. The tMethod. Journal of Catalysis, 1965, 4(3): 319–323
CrossRef Google scholar
[24]
Kowalczyk P, Terzyk A P, Gauden P A, Leboda R, Szmechtig-Gauden E, Rychlicki G, Ryu Z Y, Rong H Q. Estimation of the pore-size distribution function from the nitrogen adsorption isotherm. Comparison of density functional theory and the method of Do and co-workers. Carbon, 2003, 41(6): 1113–1125
CrossRef Google scholar
[25]
Wang Z M, Kaneko K. Effect of pore width on micropore filling mechanism of SO2 in carbon micropores. Journal of Physical Chemistry B, 1998, 102(16): 2863–2868
CrossRef Google scholar
[26]
Hanzawa Y, Suzuki T, Kaneko K. Entrance-enriched micropore filling of n-nonane. Langmuir, 1994, 10(9): 2857–2859
CrossRef Google scholar
[27]
Kosuge K, Kubo S, Kikukawa N, Takemori M. Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance. Langmuir, 2007, 23(6): 3095–3102
CrossRef Pubmed Google scholar
[28]
Skubiszewska-Zięba J, Charmas B, Leboda R, Staszczuk P, Kowalczyk P, Oleszczuk P. Effect of hydrothermal modification on the porous structure and thermal properties of carbon-silica adsorbents (carbosils). Materials Chemistry and Physics, 2003, 78(2): 486–494
CrossRef Google scholar
[29]
Takeuchi M, Hidaka M, Anpo M. Efficient removal of toluene and benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst. Journal of Hazardous Materials, 2012, 237−238: 133–139
CrossRef Pubmed Google scholar
[30]
Xu L, Zhu L. Structures of OTMA- and DODMA-bentonite and their sorption characteristics towards organic compounds. Journal of Colloid and Interface Science, 2009, 331(1): 8–14
CrossRef Pubmed Google scholar
[31]
Cecilia J A, García-Sancho C, Franco F. Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties. Microporous and Mesoporous Materials, 2013, 176: 95–102
CrossRef Google scholar
[32]
Pálková H, Madejová J, Zimowska M, Serwicka E M. Laponite-derived porous clay heterostructures: II. FTIR study of the structure evolution. Microporous and Mesoporous Materials, 2010, 127(3): 237–244
CrossRef Google scholar
[33]
Stefanov B I, Topalian Z, Granqvist C G, Osterlund L. Acetaldehyde adsorption and condensation on anatase TiO2: influence of acetaldehyde dimerization. Journal of Molecular Catalysis A Chemical, 2014, 381: 77–88
CrossRef Google scholar
[34]
Singh M, Zhou N, Paul D K, Klabunde K J. IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO2 surface. Journal of Catalysis, 2008, 260(2): 371–379
CrossRef Google scholar
[35]
Cao H B, Du P F, Song L X, Xiong J, Yang J J, Xing T H, Liu X, Wu R R, Wang M C, Shao X L. Co-electrospinning fabrication and photocatalytic performance of TiO2/SiO2 core/sheath nanofibers with tunable sheath thickness. Materials Research Bulletin, 2013, 48(11): 4673–4678
CrossRef Google scholar

Acknowledgements

This work was supported by grants from the National High Technology Research and Development Program of China (Grant Nos. 2010AA064902 and 2012AA062702) and the Key Innovation Team for Science and Technology of Zhejiang Province (No.2009R50047).
is available in the online version of this article at http://dx.doi.org/10.1007/s11783-014-0760-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(508 KB)

Accesses

Citations

Detail

Sections
Recommended

/