Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air
Pu ZHAO, Lizhong ZHU
Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air
Adsorption is the most widely used technology for the removal of indoor volatile organic compounds (VOCs). However, existing adsorbent-based technologies are inadequate to meet the regulatory requirement, due to their limited adsorption capacity and efficiency, especially under high relative humidity (RH) conditions. In this study, a series of new porous clay heterostructure (PCH) adsorbents with various ratios of micropores to mesopores were synthesized, characterized and tested for the adsorption of acetaldehyde and toluene. Two of them, PCH25 and PCH50, exhibited markedly improved adsorption capability, especially for hydrophilic acetaldehyde. The improved adsorption was attributed to their large micropore areas and high micropore-to-mesopore volume ratios. The amount of acetaldehyde adsorbed onto PCH25 at equilibrium reached 62.7 mg·g−1, eight times as much as the amount adsorbed onto conventional activated carbon (AC). Even at a high RH of 80%, PCH25 removed seven and four times more of the acetaldehyde than AC and the unmodified raw PCHs did, respectively. This new PCH optimized for their high adsorption and resistance to humidity has promising applications as a cost-effective adsorbent for indoor air purification.
porous clay heterostructure / volatile organic compounds / adsorption / adsorbent / indoor air
[1] |
Clarisse B, Laurent A M, Seta N, Le Moullec Y, El Hasnaoui A, Momas I. Indoor aldehydes: measurement of contamination levels and identification of their determinants in Paris dwellings. Environmental Research, 2003, 92(3): 245–253
CrossRef
Pubmed
Google scholar
|
[2] |
Weng M, Zhu L, Yang K, Chen S. Levels, sources, and health risks of carbonyls in residential indoor air in Hangzhou, China. Environmental Monitoring and Assessment, 2010, 163(1−4): 573–581
CrossRef
Pubmed
Google scholar
|
[3] |
Guo H. Source apportionment of volatile organic compounds in Hong Kong homes. Building and Environment, 2011, 46(11): 2280–2286
CrossRef
Google scholar
|
[4] |
Du Z J, Mo J H, Zhang Y P, Xu Q J. Benzene, toluene and xylenes in newly renovated homes and associated health risk in Guangzhou, China. Building and Environment, 2014, 72: 75–81
CrossRef
Google scholar
|
[5] |
Lyu J Z, Zhu L Z, Burda C. Optimizing nanoscale TiO2 for adsorption-enhanced photocatalytic degradation of low-concentration air pollutants. Chemcatchem, 2013, 5(10): 3114–3123
CrossRef
Google scholar
|
[6] |
Chiang C Y, Liu Y Y, Chen Y S, Liu H S. Absorption of hydrophobic volatile organic compounds by a rotating packed bed. Industrial & Engineering Chemistry Research, 2012, 51(27): 9441–9445
CrossRef
Google scholar
|
[7] |
Lashaki M J, Fayaz M, Wang H H, Hashisho Z, Philips J H, Anderson J E, Nichols M. Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon. Environmental Science & Technology, 2012, 46(7): 4083–4090
CrossRef
Pubmed
Google scholar
|
[8] |
Chen H M, He J H, Zhang C B, He H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. Journal of Physical Chemistry C, 2007, 111(49): 18033–18038
CrossRef
Google scholar
|
[9] |
Li L, Liu S, Liu J. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. Journal of Hazardous Materials, 2011, 192(2): 683–690
CrossRef
Pubmed
Google scholar
|
[10] |
Nouri S, Haghseresht F. Adsorption of p-nitrophenol in untreated and treated activated carbon. Adsorption-Journal of the International Adsorption Society, 2004, 10(1): 79–86
CrossRef
Google scholar
|
[11] |
Cal M P, Rood M J, Larson S M. Removal of VOCs from humidified gas streams using activated carbon cloth. Gas Separation & Purification, 1996, 10(2): 117–121
CrossRef
Google scholar
|
[12] |
Chmielarz L, Kustrowski P, Piwowarska Z, Dudek B, Gil B, Michalik M. Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 2009, 88(3−4): 331–340
CrossRef
Google scholar
|
[13] |
Chmielarz L, Piwowarska Z, Kustrowski P, Gil B, Adamski A, Dudek B, Michalik M. Porous clay heterostructures (PCHs) intercalated with silica-titania pillars and modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 2009, 91(1−2): 449–459
CrossRef
Google scholar
|
[14] |
Pires J, Bestilleiro M, Pinto M, Gil A. Selective adsorption of carbon dioxide, methane and ethane by porous clays heterostructures. Separation and Purification Technology, 2008, 61(2): 161–167
CrossRef
Google scholar
|
[15] |
Pires J, Araújo A C, Carvalho A P, Pinto M L, González-Calbet J M, Ramírez-Castellanos J. Porous materials from clays by the gallery template approach: synthesis, characterization and adsorption properties. Microporous and Mesoporous Materials, 2004, 73(3): 175–180
CrossRef
Google scholar
|
[16] |
Santos C, Andrade M, Vieira A L, Martins A, Pires J, Freire C, Carvalho A P. Templated synthesis of carbon materials mediated by porous clay heterostructures. Carbon, 2010, 48(14): 4049–4056
CrossRef
Google scholar
|
[17] |
Nunes C D, Pires J, Carvalho A P, Calhorda M J, Ferreira P. Synthesis and characterisation of organo-silica hydrophobic clay hetero structures for volatile organic compounds removal. Microporous and Mesoporous Materials, 2008, 111(1−3): 612–619
CrossRef
Google scholar
|
[18] |
Qu F, Zhu L, Yang K. Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH). Journal of Hazardous Materials, 2009, 170(1): 7–12
CrossRef
Pubmed
Google scholar
|
[19] |
Zhu H Y, Ding Z, Barry J C. Porous solids from layered clays by combined pillaring and templating approaches. Journal of Physical Chemistry B, 2002, 106(44): 11420–11429
CrossRef
Google scholar
|
[20] |
Hu X J, Qiao S Z, Zhao X S, Lu G Q. Adsorption study of benzene in ink-bottle-like MCM-41. Industrial & Engineering Chemistry Research, 2001, 40(3): 862–867
CrossRef
Google scholar
|
[21] |
Rege S U, Yang R T. Corrected Horváth-Kawazoe equations for pore-size distribution. AIChE Journal. American Institute of Chemical Engineers, 2000, 46(4): 734–750
CrossRef
Google scholar
|
[22] |
Wei L M, Tang T, Huang B T. Novel acidic porous clay heterostructure with highly ordered organic-inorganic hybrid structure: one-pot synthesis of mesoporous organosilica in the galleries of clay. Microporous and Mesoporous Materials, 2004, 67(2−3): 175–179
CrossRef
Google scholar
|
[23] |
Lippens B C, Deboer J H. Studies on Pore Systems In Catalysts: V. The tMethod. Journal of Catalysis, 1965, 4(3): 319–323
CrossRef
Google scholar
|
[24] |
Kowalczyk P, Terzyk A P, Gauden P A, Leboda R, Szmechtig-Gauden E, Rychlicki G, Ryu Z Y, Rong H Q. Estimation of the pore-size distribution function from the nitrogen adsorption isotherm. Comparison of density functional theory and the method of Do and co-workers. Carbon, 2003, 41(6): 1113–1125
CrossRef
Google scholar
|
[25] |
Wang Z M, Kaneko K. Effect of pore width on micropore filling mechanism of SO2 in carbon micropores. Journal of Physical Chemistry B, 1998, 102(16): 2863–2868
CrossRef
Google scholar
|
[26] |
Hanzawa Y, Suzuki T, Kaneko K. Entrance-enriched micropore filling of n-nonane. Langmuir, 1994, 10(9): 2857–2859
CrossRef
Google scholar
|
[27] |
Kosuge K, Kubo S, Kikukawa N, Takemori M. Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance. Langmuir, 2007, 23(6): 3095–3102
CrossRef
Pubmed
Google scholar
|
[28] |
Skubiszewska-Zięba J, Charmas B, Leboda R, Staszczuk P, Kowalczyk P, Oleszczuk P. Effect of hydrothermal modification on the porous structure and thermal properties of carbon-silica adsorbents (carbosils). Materials Chemistry and Physics, 2003, 78(2): 486–494
CrossRef
Google scholar
|
[29] |
Takeuchi M, Hidaka M, Anpo M. Efficient removal of toluene and benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst. Journal of Hazardous Materials, 2012, 237−238: 133–139
CrossRef
Pubmed
Google scholar
|
[30] |
Xu L, Zhu L. Structures of OTMA- and DODMA-bentonite and their sorption characteristics towards organic compounds. Journal of Colloid and Interface Science, 2009, 331(1): 8–14
CrossRef
Pubmed
Google scholar
|
[31] |
Cecilia J A, García-Sancho C, Franco F. Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties. Microporous and Mesoporous Materials, 2013, 176: 95–102
CrossRef
Google scholar
|
[32] |
Pálková H, Madejová J, Zimowska M, Serwicka E M. Laponite-derived porous clay heterostructures: II. FTIR study of the structure evolution. Microporous and Mesoporous Materials, 2010, 127(3): 237–244
CrossRef
Google scholar
|
[33] |
Stefanov B I, Topalian Z, Granqvist C G, Osterlund L. Acetaldehyde adsorption and condensation on anatase TiO2: influence of acetaldehyde dimerization. Journal of Molecular Catalysis A Chemical, 2014, 381: 77–88
CrossRef
Google scholar
|
[34] |
Singh M, Zhou N, Paul D K, Klabunde K J. IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO2 surface. Journal of Catalysis, 2008, 260(2): 371–379
CrossRef
Google scholar
|
[35] |
Cao H B, Du P F, Song L X, Xiong J, Yang J J, Xing T H, Liu X, Wu R R, Wang M C, Shao X L. Co-electrospinning fabrication and photocatalytic performance of TiO2/SiO2 core/sheath nanofibers with tunable sheath thickness. Materials Research Bulletin, 2013, 48(11): 4673–4678
CrossRef
Google scholar
|
/
〈 | 〉 |