Simple model of sludge thickening process in secondary settlers

Yuankai ZHANG , Hongchen WANG , Lu QI , Guohua LIU , Zhijiang HE , Songzhu JIANG

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 319 -326.

PDF (789KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 319 -326. DOI: 10.1007/s11783-014-0758-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Simple model of sludge thickening process in secondary settlers

Author information +
History +
PDF (789KB)

Abstract

In wastewater treatment plants (WWTPs), a secondary settler acts as a clarifier, sludge thickener, and sludge storage tank during peak flows and therefore plays an important role in the performance of the activated sludge process. Sludge thickening occurs in the lower portions of secondary clarifiers during their operation. In this study, by detecting the hindered zone from the complete thickening process of activated sludge, a simple model for the sludge thickening velocity, us=aXb(a=0.9925SSVI3.5,b=3.541 ln(SSVI3.5)+12.973), describing the potential and performance of activated sludge thickening in the hindered zone was developed. However, sludge thickening in the compression zone was not studied because sludge in the compression zone showed limited thickening. This empirical model was developed using batch settling data obtained from four WWTPs and validated using measured data from a fifth WWTP to better study sludge thickening. To explore different sludge settling and thickening mechanisms, the curves of sludge thickening and sludge settling were compared. Finally, it was found that several factors including temperature, stirring, initial depth, and polymer conditioning can lead to highly concentrated return sludge and biomass in a biologic reactor.

Keywords

wastewater treatment plants / secondary settler / sludge thickening / sludge settling / hindered zone

Cite this article

Download citation ▾
Yuankai ZHANG, Hongchen WANG, Lu QI, Guohua LIU, Zhijiang HE, Songzhu JIANG. Simple model of sludge thickening process in secondary settlers. Front. Environ. Sci. Eng., 2016, 10(2): 319-326 DOI:10.1007/s11783-014-0758-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Coe H SClevenger G H. Methods for determining the capacities of slime settling tanks. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers191655: 356–384

[2]

Kynch G J. A theory of sedimentation. Transactions of the Faraday Society195248: 166–176

[3]

Shannon P TStroupe ETory E M. Batch and continuous thickening. Basic theory. Solids flux for rigid spheres. Industrial & Engineering Chemistry Fundamentals19632(3): 203–211

[4]

Yoshioka NHotta YTanaka SNaito STsugami S. Continuous thickening of homogeneous flocculated slurries. Chemical Engineering Tokyo195721(2): 66–74

[5]

Kalinske A A. Settling characteristics of suspensions in water treatment processes. Journal–American Water Works Association194840(2): 113–120

[6]

Vesilind P A. Design of prototype thickeners from batch settling tests. Water Sewage Works1968115(7): 302–307 

[7]

Brown J CLa Motta E. Physical behavior of flocculent suspensions in upflow. Journal of the Sanitary Engineering Division197197(2): 209–224

[8]

Takács IPatry G GNolasco D. A dynamic model of the clarification-thickening process. Water Research199125(10): 1263–1271

[9]

Cho S HColin FSardin MProst C. Settling velocity model of activated sludge. Water Research199327(7): 1237–1242

[10]

Daigger G T. Development of refined clarifier operating diagrams using an updated settling characteristics database. Water Environment Research199567(1): 95–100

[11]

Ozinsky A EEkama G A. Secondary settling tank modelling and design Part 2: Linking sludge settleability measures. Water SA199521(4): 333–349

[12]

Forster C F. A further examination of mass flux theory as applied to activated sludge settlement. Biotechnology Letters19824(6): 381–386

[13]

Daigger G TRoper R E Jr. The relationship between SVI and activated sludge settling characteristics. Journal - Water Pollution Control Federation198557(8): 859–866

[14]

Koopman BCadee K. Prediction of thickening capacity using diluted sludge volume index. Water Research198317(10): 1427–1431

[15]

Wahlberg E JKeinath T M. Development of settling flux curves using SVI: An addendum. Water Environment Research199567(5): 872–874

[16]

Li Z L. One-dimensional flux model for the secondary settling tanks and its application. Dissertation for the Master Degree. Chongqing: Chongqing University, 2006 (in Chinese)

[17]

Wahlberg E JKeinath T M. Development of settling flux curves using SVI. Journal - Water Pollution Control Federation198860(12): 2095–2100

[18]

Ekama G ABarnard J LGünthert F WKrebs PMcCorquodale J AParker D SWahlberg E J. Secondary Settling Tanks: Theory, Modelling, Design and Operation. London: International Association on Water Quality1997, 187–203

[19]

Göhle FFinnson AHultman B. Dynamic simulation of sludge blanket movements in a full-scale rectangular sedimentation basin. Water Science and Technology199633(1): 89–99

[20]

Härtel LPöpel H J. A dynamic secondary clarifier model including processes of sludge thickening. Water Science and Technology199225(6): 267–284

[21]

Dick R IVesilind P A. The sludge volume index–What is it? Journal- Water Pollution Control Federation196941(7): 1285–1291

[22]

White M J D. Settling of Activated Sludge. England: Water Research Centre, 1975

[23]

Dong Y JWang Y LFeng J. Rheological and fractal characteristics of unconditioned and conditioned water treatment residuals. Water Research201145(13): 3871–3882

[24]

Chu C PLee D J. Multiscale structures of biological flocs. Chemical Engineering Science200459(8–9): 1875–1883

[25]

Jin P KWang X C. Morphological characteristics of Al-humic floc and coagulation chemistry. Acta Scientiae Circumstantiae200121: 23–29 (in Chinese) 

[26]

Wang Y LLu JDu B YShi B YWang D S. Fractal analysis of polyferric chloride-humic acid (PFC-HA) flocs in different topological spaces. Journal of Environmental Sciences-China200921(1): 41–48

[27]

Zahid WGanczarczyk J. Fractal properties of the RBC biofilm structure. Water Science and Technology199429(10–11): 271–279

[28]

Wilén B MJin BLant P. Impacts of structural characteristics on activated sludge floc stability. Water Research200337(15): 3632–3645

[29]

Smith P GCoackley P. Diffusivity, tortuosity and pore structure of activated sludge. Water Research198418(1): 117–122

[30]

Tambo NWatanabe Y. Physical characteristics of flocs—I. The floc density function and aluminium floc. Water Research197913(5): 409–419

[31]

Hermanowicz S WGanczarczyk J J. Some fluidization characteristics of biological beds. Biotechnology and Bioengineering198325(5): 1321–1330

[32]

Mueller J AMorand JBoyle W C. Floc sizing techniques. Applied Microbiology196715(1): 125–134

[33]

Lagvankar A LGemmell R S. A size-density relationship for flocs. Journal - American Water Works Association196860(9): 1040–1046

[34]

Jin BWilén B MLant P. A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge. Chemical Engineering Journal200395(1–3): 221–234

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (789KB)

3743

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/