Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation

Xiaolong CHU , Guoqiang SHAN , Chun CHANG , Yu FU , Longfei YUE , Lingyan ZHU

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 211 -218.

PDF (750KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 211 -218. DOI: 10.1007/s11783-014-0753-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation

Author information +
History +
PDF (750KB)

Abstract

Bi2WO6 was synthesized with a hydrothermal method at different pHs and used for the degradation of tetracycline (TC) in water. The mesoporous Bi2WO6 prepared at pH 1 (BWO-1) displayed the highest adsorption and degradation capacity to TC due to its large surface area and more efficient capacity to separate photogenerated electrons and holes. 97% of TC at 20 mg·L−1 was removed by BWO-1 at 0.5 g·L−1 after 120 min irradiation under simulated solar light. Only 31% of the total organic carbon (TOC) was removed after 360 min irradiation although the TC removal reached 100%, suggesting that TC was mainly transformed to intermediate products rather than completely mineralized. The intermediates were identified by high-performance liquid chromatography-time of flight-mass spectrometry (HPLC-TOF-MS) and possible photodegradation pathways were proposed.

Keywords

Bi2WO6 / hydrothermal synthesis / tetracycline (TC) / photocatalysis

Cite this article

Download citation ▾
Xiaolong CHU, Guoqiang SHAN, Chun CHANG, Yu FU, Longfei YUE, Lingyan ZHU. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation. Front. Environ. Sci. Eng., 2016, 10(2): 211-218 DOI:10.1007/s11783-014-0753-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Khetan S KCollins T J, Human pharmaceuticals in the aquatic environment: a challenge to Green Chemistry. Chemical Reviews2007107(6): 2319–2364

[2]

Stuer-Lauridsen FBirkved MHansen L PLützhøft H C HHalling-Sørensen B. Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere200041(9): 1509–1509

[3]

Wang DLi YLi GWang CZhang WWang Q. Development and modeling of a flat plate serpentine reactor for photocatalytic degradation of 17-ethinylestradiol. Environmental Science and Pollution Research International201320(4): 2321–2329

[4]

Wang DLi YLi GWang CZhang WWang Q. Modeling of quantitative effects of water components on the photocatalytic degradation of 17α-ethynylestradiol in a modified flat plate serpentine reactor. Journal of Hazardous Materials2013254–255: 64–71

[5]

Bautitz I RNogueira R F P. Degradation of tetracycline by photo-Fenton process -Solar irradiation and matrix effects. Journal of Photochemistry and Photobiology A: Chemistry2007187(1,5): 33–39

[6]

Karthikeyan K GMeyer M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment2006361(1–3): 196–207

[7]

Kolpin D WFurlong E TMeyer M TThurman E MZaugg S DBarber L BBuxton H T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science & Technology200236(6): 1202–1211

[8]

Stumpf MTernes T AWilken R DRodrigues S VBaumann W. Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of the Total Environment1999225(1–2): 135–141

[9]

Kümmerer K. Antibiotics in the aquatic environment: a review—Part I. Chemosphere200975(4): 417–434

[10]

Pailler J YKrein APfister LHoffmann LGuignard C. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg. Science of the Total Environment2009407(16): 4736–4743

[11]

Khan M HBae HJung J Y. Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway. Journal of Hazardous Materials2010181(1–3): 659–665

[12]

Liu SZhao X RSun H YLi R RFang Y FHuang Y P. The degradation of tetracycline in a photo-electro-Fenton system. Chemical Engineering Journal2013231: 441–448

[13]

Gómez-Pacheco C VSánchez-Polo MRivera-Utrilla JLópez-Peñalver J J. Tetracycline degradation in aqueous phase by ultraviolet radiation. Chemical Engineering Journal2012187(1): 89–95

[14]

Zhu X DWang Y JSun R JZhou D M. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2Chemosphere201392(8): 925–932

[15]

Wang PYap P SLim T T. C–N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Applied Catalysis A: General2011399(1–2): 252–261

[16]

Wang DLi YLi  GWang CWang PZhang WWang Q. Ag/AgCl@helical chiral TiO2 nanofibers as a visible-light driven plasmon photocatalyst. Chemical Communications201349(88): 10367–10369

[17]

Li Y YLiu J PHuang X TLi G Y. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Crystal Growth & Design20077(7): 1350–1355

[18]

Shang MWang W ZSun S MZhou LZhang L. Bi2WO6 nanocrystals with high photocatalytic activities under visible light. Journal of Physical Chemistry C2008112(28): 10407–10411

[19]

Dai KPeng T YChen HLiu JZan L. Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension. Environmental Science & Technology200943(5): 1540–1545

[20]

Shang MWang W ZSun S MRen JZhou LZhang L. Efficient visible light-induced photocatalytic degradation of contaminant by spindle-like PANI/BiVO4Journal of Physical Chemistry C2009113(47): 20228–20233

[21]

Kudo AHijii S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chemistry Letters199928(10): 1103–1104

[22]

Wang CZhang HLi FZhu L. Degradation and mineralization of bisphenol A by mesoporous Bi2WO6 under simulated solar light irradiation. Environmental Science & Technology201044(17): 6843–6848

[23]

Chen PZhu LFang SWang CShan G. Photocatalytic degradation efficiency and mechanism of microcystin-RR by mesoporous Bi2WO6 under near ultraviolet light. Environmental Science & Technology201246(4): 2345–2351

[24]

Nyholm RBerndtsson AMartensson N. Core level binding energies for the elements Hf to Bi (Z=72−83). Journal of Physics C: Solid State Physics198013(36): 1091–1096

[25]

Yao S SWei J YHuang B BFeng S YZhang X YQin X YWang PWang Z YZhang QJing X YZhan J. Morphology modulated growth of bismuth tungsten oxide nanocrystals. Journal of Solid State Chemistry2009182(2): 236–239

[26]

Pierotti RRouquerol J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry198557: 603–619

[27]

Huang YAi ZHo WChen MLee S. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible-light-induced photocatalytic removal of NO. Journal of Physics and Chemistry C2010114(14): 6342–6349

[28]

Castillo CCriado SDíaz MGarcía N A. Riboflavin as a sensitiser in the photodegradation of tetracyclines. Kinetics, mechanism and microbiological implications. Dyes and Pigments200772(2): 178–184

[29]

Chang CFu YHu MWang CShan GZhu L. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Applied Catalysis B: Environmental2013142–143: 553–560

[30]

Wang XChen XThomas AFu XAntonietti M. Metal-containing carbon nitride compounds: a new functional organic–metal hybrid material. Advanced Materials200921(16): 1609–1612

[31]

Xiao FWang FFu XZheng Y. A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. Journal of Materials Chemistry201222(7): 2868–2877

[32]

Zhang YZhang NTang Z RXu Y J. Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C-H bonds under ambient conditions. Chemical Science20123: 2812–2822

[33]

Wang CZhu LWei MChen PShan G. Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water. Water Research201246(3): 845–853

[34]

Amano FNogami KOhtani B. Enhanced photocatalytic activity of bismuth-tungsten mixed oxides for oxidative decomposition of acetaldehyde under visible light irradiation. Catalysis Communications201220(5): 12–16

[35]

Ng JWang XSun D D. One-pot hydrothermal synthesis of a hierarchical nanofungus-like anatase TiO2 thin film for photocatalytic oxidation of bisphenol A. Applied Catalysis B: Environmental2011110(2): 260–272

[36]

Wang R CRen D JXia S QZhang Y LZhao J F. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). Journal of Hazardous Materials2009169(1–3): 926–932

[37]

Hao RXiao XZuo X XNan J MZhang W D. Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. Journal of Hazardous Materials2012209-210(30): 137–145

[38]

Yuan FHu CHu X XWei D BChen YQu J H. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials2011185(2–3): 1256–1263

[39]

Dai KPeng T YChen HZhang R XZhang Y X. Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environmental Science & Technology200842(5): 1505–1510

[40]

Wang YZhang HChen LWang SZhang D. Ozonation combined with ultrasound for the degradation of tetracycline in a rectangular air-lift reactor. Separation and Purification Technology201284(9): 138–146

[41]

Wang YZhang HZhang JLu CHuang QWu JLiu F. Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor. Journal of Hazardous Materials2011192(1): 35–43

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (750KB)

Supplementary files

Supplementary Material

3234

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/