Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands

Jianguo LIU , Wen ZHANG , Peng QU , Mingxin WANG

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 262 -269.

PDF (139KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 262 -269. DOI: 10.1007/s11783-014-0746-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands

Author information +
History +
PDF (139KB)

Abstract

Variations in cadmium (Cd) tolerances and accumulations among fifteen wetland plant species in moderately (0.5 mg·L−1) and heavily (1.0 mg·L−1) Cd-polluted wastewaters were investigated in constructed wetlands. Cd removal efficiencies from the wastewaters were more than 90%, and 23.5% and 16.8% of the Cd in the water accumulated in wetland plants for 0.5 and 1.0 mg·L−1 Cd treatments, respectively. The variations among the plant species were 29.4-fold to 48.7-fold in plant biomasses, 5.4-fold to 21.9-fold in Cd concentrations, and 13.8-fold to 29.6-fold in Cd accumulations. The plant species were also largely diversified in terms of Cd tolerance. Some species were tolerant of heavy Cd stress, and some others were sensitive to moderate Cd level. Four wetland plant species were selected for the treatment of Cd-polluted wastewater for their high Cd accumulating abilities and relative Cd tolerances. Plant Cd quantity accumulations are correlated positively and significantly (P <0.05) with plant biomasses and correlated positively but insignificantly (P >0.05) with plant Cd concentrations. The results indicate that the Cd accumulation abilities of wetland plant species are determined mainly by their biomasses and Cd tolerances in growth, which should be the first criteria in selecting wetland plant species for the treating Cd-polluted wastewaters. Cd concentration in the plants may be the second consideration.

Keywords

cadmium (Cd) / wastewater treatment / wetland plant / selection / index

Cite this article

Download citation ▾
Jianguo LIU, Wen ZHANG, Peng QU, Mingxin WANG. Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands. Front. Environ. Sci. Eng., 2016, 10(2): 262-269 DOI:10.1007/s11783-014-0746-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DalCorso GFarinati SMaistri SFurini A. How plants cope with cadmium: staking all on metabolism and gene expression. Journal of Integrative Plant Biology200850(10): 1268–1280

[2]

Madejón PMarañón TMurillo J MRobinson B. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environmental Pollution2004132(1): 145–155

[3]

Wang HJia YWang SZhu HWu X. Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australisJournal of Hazardous Materials2009167(1−3): 641–646

[4]

Solano M LSoriano PCiria M P. Constructed wetlands as a sustainable solution for wastewater treatment in small villages. Biosystems Engineering200487(1): 109–118

[5]

Carty AScholz MHeal KGouriveau FMustafa A. The universal design, operation and maintenance guidelines for farm constructed wetlands (FCW) in temperate climates. Bioresource Technology200899(15): 6780–6792

[6]

Kaseva M E. Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater-a tropical case study. Water Research200438(3): 681–687

[7]

Korkusuz E ABeklioglu MDemirer G N. Comparison of the treatment performance of the blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey. Ecological Engineering200524(3): 187–200

[8]

Zhang D QGersberg R MHua TZhu JTuan N ATan S K. Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates. Chemosphere201287(3): 273–277

[9]

Rai U NTripathi R DSingh N KUpadhyay A KDwivedi SShukla M KMallick SSingh S NNautiyal C S. Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river. Bioresource Technology2013148: 535–541

[10]

Bulc T G. Long term performance of a constructed wetland for landfill leachate treatment. Ecological Engineering200626(4): 365–374

[11]

Justin M ZZupančič M. Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows. Desalination200924: 15–16

[12]

Bobbink RWhigham D FBeltman BVerhoeven J T A. Wetland functioning in relation to biodiversity conservation and restoration. In: Bobbink RBeltman BVerhoeven J T AWhigham D F, eds. Wetlands: functioning, biodiversity conservation, and restoration. Berlin: Springer2006, 1–12.

[13]

Maine M ASuñe NHadad HSánchez GBonetto C. Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance. Chemosphere200768(6): 1105–1113

[14]

Deng HYe Z HWong M H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution2004132(1): 29–40

[15]

Ye Z HCheung K CWong M H. Copper uptake in Typha latifolia as affected by iron and manganese plaque on the root surface. Canadian Journal of Botany200179(3): 314–320

[16]

Stoltz EGreger M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany200247(3): 271–280

[17]

Najeeb UXu LAli SJilani GGong H JShen W QZhou W J. Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. Journal of Hazardous Materials2009170(2−3): 1156–1163

[18]

Yoon JCao XZhou QMa L Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment2006368(2−3): 456–464

[19]

Qian YGallagher F JFeng HWu M. A geochemical study of toxic metal translocation in an urban brownfield wetland. Environmental Pollution2012166: 23–30

[20]

Liu J GLi G HShao W CXu J KWang D K. Variations in uptake and translocation of copper, chromium, and nickel among nineteen wetland plant species. Pedosphere201020(1): 96–103

[21]

Liu JDong YXu HWang DXu J. Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland. Journal of Hazardous Materials2007147(3): 947–953

[22]

Amacher M C. Nickel, cadmium, and lead. In: Sparks D L, ed. Methods of soil analysis, part 3- chemical methods. Madison: Soil Science Society of America Inc. and American Society of Agronomy Inc.1996, 739–768

[23]

Demirezen DAksoy A. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere200456(7): 685–696

[24]

Allen S E. Analysis of vegetation and other organic materials. In: Allen S E, ed. Chemical Analysis of Ecological Materials. Oxford: Blackwell Scientific Publications1989, 46–61

[25]

Song Z WZheng Z PLi JSun X FHan X YWang WXu M. Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China. Ecological Engineering200626(3): 272–282

[26]

Maine M ASuñe NHadad HSánchez GBonetto C. Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecological Engineering200626(4): 341–347

[27]

Maine M ASuñe NHadad HSánchez GBonetto C. Phosphate and metal retention in a small-scale constructed wetland for waste-water treatment. In: Golterman, H LSerrano L, eds. Phosphate in Sediments. Leiden: Backhuys Publishers2005, 21–31

[28]

Cheng S PGrosse WKarrenbrock FThoennessen M. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecological Engineering200218(3): 317–325

[29]

Ayaz S CAkça L. Treatment of wastewater by natural systems. Environment International200126(3): 189–195

[30]

Xue P YLi G XLiu W JYan C Z. Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle. Chemosphere201081(9): 1098–1103

[31]

Zhang M YCui L JSheng L XWang Y F. Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China. Ecological Engineering200935(4): 563–569

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (139KB)

2785

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/