Tuning the catalytic selectivity in electrochemical CO2 reduction on copper oxide-derived nanomaterials
Jiafang XIE, Yuxi HUANG, Hanqing YU
Tuning the catalytic selectivity in electrochemical CO2 reduction on copper oxide-derived nanomaterials
Electrochemical conversion of CO2 to hydrocarbons can relieve both environmental and energy stresses. However, electrocatalysts for this reaction usually suffer from a poor product selectivity and a large overpotential. Here we report that tunable catalytic selectivity for hydrocarbon formation could be achieved on Cu nanomaterials with different morphologies. By tuning the electrochemical parameters, either Cu oxide nanowires or nanoneedles were fabricated and then electrochemically reduced to the corresponding Cu nanomaterials. The Cu nanowires preferred the formation of C2H4, while the Cu nanoneedles favored the production of more CH4, rather than C2H4. Our work provides a facile synthetic strategy for preparing Cu-based nanomaterials to achieve selective CO2 reduction.
electrochemical CO2 reduction, Cu oxide, nanostructure, selectivity / hydrocarbon formation
[1] |
Ballantyne A P, Alden C B, Miller J B, Tans P P, White J W. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 2012, 488(7409): 70–72
CrossRef
Pubmed
Google scholar
|
[2] |
Parkinson B A, Weaver P F. Photoelectrochemical pumping of enzymatic CO2 reduction. Nature, 1984, 309(5964): 148–149
CrossRef
Google scholar
|
[3] |
Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B L, Tovar M, Fischer R W, Nørskov J K, Schlögl R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science, 2012, 336(6083): 893–897
CrossRef
Pubmed
Google scholar
|
[4] |
Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G. Activated carbons and amine-modified materials for carbon dioxide capture — a review. Frontiers of Environmental Science & Engineering, 2013, 7(3): 326–340
CrossRef
Google scholar
|
[5] |
Oloman C, Li H. Electrochemical processing of carbon dioxide. ChemSusChem, 2008, 1(5): 385–391
CrossRef
Pubmed
Google scholar
|
[6] |
Kondratenko E V, Mul G, Baltrusaitis J, Larrazabal G O, Perez-Ramirez J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & Environmental Science, 2013, 6(11): 3112–3135
CrossRef
Google scholar
|
[7] |
Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B A, Haasch R, Abiade J, Yarin A L, Salehi-Khojin A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nature Communications, 2013, 4: 2819–2826
CrossRef
Pubmed
Google scholar
|
[8] |
Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær C F, Hummelshøj J S, Dahl S, Chorkendorff I, Nørskov J K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature Chemistry, 2014, 6(4): 320–324
CrossRef
Pubmed
Google scholar
|
[9] |
Lu Q, Rosen J, Zhou Y, Hutchings G S, Kimmel Y C, Chen J G, Jiao F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Communications, 2014, 5: 3242–3247
CrossRef
Pubmed
Google scholar
|
[10] |
Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T. Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. Journal of the Electrochemical Society, 1990, 137(6): 1772–1778
CrossRef
Google scholar
|
[11] |
Hori Y. Electrochemical CO2 reduction on metal electrodes. In: Vayenas C, White R, Gamboa-Aldeco M, eds. Modern Aspects of Electrochemistry. New York: Springer, 2008, 89–189
|
[12] |
Wasmus S, Cattaneo E, Vielstich W. Reduction of carbon dioxide to methane and ethene — An on-line MS study with rotating electrodes. Electrochimica Acta, 1990, 35(4): 771–775
CrossRef
Google scholar
|
[13] |
Jermann B, Augustynski J. Long-term activation of the copper cathode in the course of CO2 reduction. Electrochimica Acta, 1994, 39(11−12): 1891–1896
CrossRef
Google scholar
|
[14] |
Hori Y, Takahashi I, Koga O, Hoshi N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. Journal of Physical Chemistry B, 2002, 106(1): 15–17
CrossRef
Google scholar
|
[15] |
Hori Y, Takahashi I, Koga O, Hoshi N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. Journal of Molecular Catalysis A Chemical, 2003, 199(1−2): 39–47
CrossRef
Google scholar
|
[16] |
Schouten K J P, Kwon Y, van der Ham C J M, Qin Z, Koper M T M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chemical Science, 2011, 2(10): 1902–1909
CrossRef
Google scholar
|
[17] |
Durand W J, Peterson A A, Studt F, Abild-Pedersen F, Nørskov J K. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surface Science, 2011, 605(15−16): 1354–1359
CrossRef
Google scholar
|
[18] |
Schouten K J P, Pérez Gallent E, Koper M T M. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catalysis, 2013, 3(6): 1292–1295
CrossRef
Google scholar
|
[19] |
Reske R, Duca M, Oezaslan M, Schouten K J, Koper M T, Strasser P. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. Journal of Physical Chemistry Letters, 2013, 4(15): 2410–2413
CrossRef
Google scholar
|
[20] |
Tang W, Peterson A A, Varela A S, Jovanov Z P, Bech L, Durand W J, Dahl S, Nørskov J K, Chorkendorff I. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Physical Chemistry Chemical Physics, 2012, 14(1): 76–81
CrossRef
Pubmed
Google scholar
|
[21] |
Watanabe M, Shibata M, Kato A, Azuma M, Sakata T. Design of alloy electrocatalysts for CO2 reduction 3: the selectivity and reversible reduction of CO2 on Cu alloy electrodes. Journal of the Electrochemical Society, 1991, 128(11): 3382–3389
CrossRef
Google scholar
|
[22] |
Kauffman D R, Ohodnicki P R, Kail B W, Matranga C. Selective electrocatalytic activity of ligand stabilized copper oxide nanoparticles. Journal of Physical Chemistry Letters, 2011, 2(16): 2038–2043
CrossRef
Google scholar
|
[23] |
Li C W, Kanan M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. Journal of the American Chemical Society, 2012, 134(17): 7231–7234
CrossRef
Pubmed
Google scholar
|
[24] |
Gonçalves M R, Gomes A, Condeço J, Fernandes T R C, Pardal T, Sequeira C A C, Branco J B. Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits. Electrochimica Acta, 2013, 102: 388–392
CrossRef
Google scholar
|
[25] |
Le M, Ren M, Zhang Z, Sprunger P T, Kurtz R L, Flake J C. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. Journal of the Electrochemical Society, 2011, 158(5): E45–E49
CrossRef
Google scholar
|
[26] |
Gattrell M, Gupta N, Co A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry, 2006, 594(1): 1–19
CrossRef
Google scholar
|
[27] |
Peterson A A, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov J K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & Environmental Science, 2010, 3(9): 1311–1315
CrossRef
Google scholar
|
[28] |
Yano J, Yamasaki S. Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. Journal of Applied Electrochemistry, 2008, 38(12): 1721–1726
CrossRef
Google scholar
|
/
〈 | 〉 |