Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China

Xinwei LI , Hanchang SHI , Kuixiao LI , Liang ZHANG , Yiping GAN

Front. Environ. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (6) : 888 -894.

PDF (311KB)
Front. Environ. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (6) : 888 -894. DOI: 10.1007/s11783-014-0735-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China

Author information +
History +
PDF (311KB)

Abstract

The occurrence and removal of 13 antibiotics were investigated in five wastewater treatment plants (WWTPs) with advanced wastewater treatment processes in Beijing, China. Most of the target antibiotics were detected in the secondary and tertiary effluents, with the concentrations of 4.8–1106.0 and 0.3–505.0 ng·L-1. Fluoroquinolone antibiotics showed relatively high concentrations in all samples (782–1814 ng·L-1). Different tertiary treatment processes showed discrepant antibiotics removal performances. Ozonation process was found more effective in removing target antibiotics compared to the coagulation-flocculation-sedimentation process and sand filtration process. Investigation of the target antibiotics in three typical urban rivers in Beijing was carried out to understand antibiotics occurrence in surface water environment. Eight antibiotics were detected in the studied rivers, with highest concentration of antibiotics in the river which was mainly replenished by reclaimed water. This study showed the necessity of employing more effective advanced treatment facilities to further reduce the discharge amount of antibiotics.

Keywords

antibiotics / advanced treatment / urban river / reclaimed water

Cite this article

Download citation ▾
Xinwei LI, Hanchang SHI, Kuixiao LI, Liang ZHANG, Yiping GAN. Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Front. Environ. Sci. Eng., 2014, 8(6): 888-894 DOI:10.1007/s11783-014-0735-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jones O A, Voulvoulis N, Lester J N. The occurrence and removal of selected pharmaceutical compounds in a sewage treatment works utilising activated sludge treatment. Environmental Pollution, 2007, 145(3): 738–744

[2]

Rosal R, Rodríguez A, Perdigón-Melón J A, Petre A, Garcóa-Calvo E, Gümez M J, Agüera A, Fernández-Alba A R. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research, 2010, 44(2): 578–588

[3]

Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrovic M, Barcelo D. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 2011, 45(3): 1165–1176

[4]

Xue B, Zhang R, Wang Y, Liu X, Li J, Zhang G. Antibiotic contamination in a typical developing city in south China: occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities. Ecotoxicology and Environmental Safety, 2013, 92: 229–236

[5]

Kleywegt S, Pileggi V, Yang P, Hao C, Zhao X, Rocks C, Thach S, Cheung P, Whitehead B. Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada—occurrence and treatment efficiency. Science of the Total Environment, 2011, 409(8): 1481–1488

[6]

Watkinson A J, Murby E J, Costanzo S D. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Research, 2007, 41(18): 4164–4176

[7]

Jia A, Wan Y, Xiao Y, Hu J. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant. Water Research, 2012, 46(2): 387–394

[8]

Zhou L J, Ying G G, Liu S, Zhao J L, Yang B, Chen Z F, Lai H J. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Science of the Total Environment, 2013, 452-453: 365–376

[9]

Huber M M, Göbel A, Joss A, Hermann N, Löffler D, McArdell C S, Ried A, Siegrist H, Ternes T A, von Gunten U. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environmental Science and Technology, 2005, 39(11): 4290–4299

[10]

Huber M M, Korhonen S, Ternes T A, von Gunten U. Oxidation of pharmaceuticals during water treatment with chlorine dioxide. Water Research, 2005, 39(15): 3607–3617

[11]

Lee Y, von Gunten U. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical). Water Research, 2010, 44(2): 555–566

[12]

Wang P, He Y L, Huang C H. Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine. Water Research, 2011, 45(4): 1838–1846

[13]

Nakada N, Shinohara H, Murata A, Kiri K, Managaki S, Sato N, Takada H. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research, 2007, 41(19): 4373–4382

[14]

Ternes T A, Stüber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Research, 2003, 37(8): 1976–1982

[15]

Xu W, Zhang G, Li X, Zou S, Li P, Hu Z, Li J. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research, 2007, 41(19): 4526–4534

[16]

Zhang H, Liu P, Feng Y, Yang F. Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China. Marine Pollution Bulletin, 2013, 73(1): 282–290

[17]

Li W, Shi Y, Gao L, Liu J, Cai Y. Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China. Chemosphere, 2013, 92(4): 435–444

[18]

Tong C, Zhuo X, Guo Y. Occurrence and risk assessment of four typical fluoroquinolone antibiotics in raw and treated sewage and in receiving waters in Hangzhou, China. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7303–7309

[19]

Zorita S, Märtensson L, Mathiasson L. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Science of the Total Environment, 2009, 407(8): 2760–2770

[20]

Vieno N M, Härkki H, Tuhkanen T, Kronberg L. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environmental Science and Technology, 2007, 41(14): 5077–5084

[21]

Gracia-Lor E, Sancho J V, Serrano R, Hernández F. Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere, 2012, 87(5): 453–462

[22]

Karthikeyan K G, Meyer M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment, 2006, 361(1–3): 196–207

[23]

Behera S K, Kim H W, Oh J E, Park H S. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Science of the Total Environment, 2011, 409(20): 4351–4360

[24]

Yang X, Flowers R C, Weinberg H S, Singer P C. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Research, 2011, 45(16): 5218–5228

[25]

Wang H. Ozone kinetics of dimethyl sulfide in the presence of water vapor. Frontiers of Environmental Science and Engineering, 2013, 7(6): 833–835

[26]

Nakada N, Kiri K, Shinohara H, Harada A, Kuroda K, Takizawa S, Takada H. Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage. Environmental Science and Technology, 2008, 42(17): 6347–6353

[27]

Ikehata K, Gamal El-Din M, Snyder S A. Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. Ozone Science and Engineering, 2008, 30(1): 21–26

[28]

Sui Q, Huang J, Deng S, Yu G, Fan Q. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Research, 2010, 44(2): 417–426

[29]

Hey G, Grabic R, Ledin A, La Cour Jansen J, Andersen H. Oxidation of pharmaceuticals by chlorine dioxide in biologically treated wastewater. Chemical Engineering Journal, 2012, 185: 236–242

[30]

Batt A L, Kim S, Aga D S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere, 2007, 68(3): 428–435

[31]

Adams C, Wang Y, Loftin K, Meyer M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of Environmental Engineering, 2002, 128(3): 253–260

[32]

Canonica S, Meunier L, von Gunten U. Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Research, 2008, 42(1–2): 121–128

[33]

Xu W H, Zhang G, Zou S C, Li X D, Liu Y C. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 2007, 145(3): 672–679

[34]

Löffler D, Ternes T A. Determination of acidic pharmaceuticals, antibiotics and ivermectin in river sediment using liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2003, 1021(1–2): 133–144

[35]

Beausse J. Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances. Trends in Analytical Chemistry, 2004, 23(10–11): 753–761

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (311KB)

2587

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/