Removing carbonyl sulfide with metal-modified activated carbon

Juan QIU, Ping NING, Xueqian WANG, Kai LI, Wei LIU, Wei CHEN, Langlang WANG

PDF(171 KB)
PDF(171 KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 11-18. DOI: 10.1007/s11783-014-0714-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Removing carbonyl sulfide with metal-modified activated carbon

Author information +
History +

Abstract

A Cu-Co-K/activated carbon (AC) adsorbent has been developed for the removal of carbonyl sulfide (COS). The effects of COS concentration, reaction temperature and relative humidity were closely examined. A breakthrough of 33.23 mg COS·g−1 adsorbent at 60°C, under 30% relative humidity and in presence of 1.0% oxygen was exhibited in the Cu-Co-K/AC adsorbent prepared. Competitive adsorption studies for COS in the presence of CS2, and H2S were also conducted. TPD analysis was used to identify sulfur-containing products on the carbon surface, and the results indicated that H2S, COS and SO2 were all evident in the effluent gas generated from the exhausted Cu-Co-K/AC. Structure of the activated carbon samples has been characterized using nitrogen adsorption, and their surface chemical structures were also determined with X-ray photoelectron spectroscopy (XPS). It turns out that the modification with Cu(OH)2CO3-CoPcS-KOH can significantly improve the COS removal capacity, forming SO42 species simultaneously. Regeneration of the spent activated carbon sorbents by thermal desorption has also been explored.

Keywords

carbonyl sulfide / activated carbon / removal / reactive adsorption

Cite this article

Download citation ▾
Juan QIU, Ping NING, Xueqian WANG, Kai LI, Wei LIU, Wei CHEN, Langlang WANG. Removing carbonyl sulfide with metal-modified activated carbon. Front. Environ. Sci. Eng., 2016, 10(1): 11‒18 https://doi.org/10.1007/s11783-014-0714-5

References

[1]
Rhodes C, Riddel S A, West J, Williams B P, Hutchings G J. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review. Catalysis Today, 2000, 59(3–4): 443–464
CrossRef Google scholar
[2]
Wang H Y, Yi H H, Ning P, Tang X L, Yu L L, He D, Zhao S. Calcined hydrotalcite-like compounds as catalysts for hydrolysis carbonyl sulfide at low temperature. Chemical Engineering Journal, 2011, 166(1): 99–104
CrossRef Google scholar
[3]
Williams B P, Young N C, West J, Rhodes C, Hutchings G J. Carbonyl sulphide hydrolysis using alumina catalysts. Catalysis Today, 1999, 49(1–3): 99–104
CrossRef Google scholar
[4]
Svoronos P D N, Bruno T J. Carbonyl sulfide: a review of its chemistry and properties. Industrial & Engineering Chemistry Research, 2002, 41(22): 5321–5336
CrossRef Google scholar
[5]
Hinderaker G, Sandal O C. Absorption of carbonyl sulfide in aqueous diethanolamine. Chemical Engineering Science, 2000, 55(23): 5813–5818
CrossRef Google scholar
[6]
Wang L, Wang S D, Yuan Q, Lu G Z. COS hydrolysis in the presence of oxygen: Experiment and modeling. Journal of Natural Gas Chemistry, 2008, 17(1): 93–97
CrossRef Google scholar
[7]
Liu Y C, He H, Mu Y J. Heterogeneous reactivity of carbonyl sulfide on α-Al2O3 and g-Al2O3. Atmospheric Environment, 2008, 42(5): 960–969
CrossRef Google scholar
[8]
Zhang Y Q, Xiao Z B, Ma J X. Hydrolysis of carbonyl sulfide over rare earth oxysulfides. Applied Catalysis B: Environmental, 2004, 48(1): 57–63
CrossRef Google scholar
[9]
Huang H M, Young N, Williams B P, Taylor S H, Hutchings G. COS hydrolysis using zinc-promoted alumina catalysts. Catalysis Letters, 2005, 104(1–2): 17–21
CrossRef Google scholar
[10]
Yi H H, Wang H Y, Tang X L, Ning P, Yu L L, He D, Zhao S Z. Effect of calcination temperature on catalytic hydrolysis of COS over CoNiAl catalysts derived from hydrotalcite precursor. Industrial & Engineering Chemistry Research, 2011, 50(23): 13273–13279
CrossRef Google scholar
[11]
Toops T J, Crocker M. New sulfur adsorbents derived from layered double hydroxides II. DRIFTS study of COS and H2S adsorption. Applied Catalysis B: Environmental, 2008, 82(3–4): 199–207
CrossRef Google scholar
[12]
Huang H M, Young N, Williams B P, Taylor S H, Hutchings G. High temperature COS hydrolysis catalysed by g-Al2O3. Catalysis Letters, 2006, 110(3–4): 243–246
CrossRef Google scholar
[13]
Jackson S D, Leeming P, Webb G. Supported metal catalysts: Preparation, characterisation, and function IV. Study of hydrogen sulphide and carbonyl sulphide adsorption on platinum catalysts. Journal of Catalysis, 1996, 160(2): 235–243
CrossRef Google scholar
[14]
Wang X Z, Ding L, Zhao Z B, Xu W Y, Meng B, Qiu J H. Novel hydrodesulfurization nano-catalysts derived from Co3O4 nanocrystals with different shapes. Catalysis Today, 2011, 175(1): 509–514
CrossRef Google scholar
[15]
Thomas B, Williams B P, Young N, Rhodes C, Hutchings G J. Ambient temperature hydrolysis of carbonyl sulfide using g-alumina catalysts: effect of calcination temperature and alkali doping. Catalysis Today, 2003, 86(4): 201–205
[16]
Sparks D E, Morgan T, Patterson P M, Tackett S A, Morris E, Crocker M. New sulfur adsorbents derived from layered double hydroxides I: Synthesis and COS adsorption. Applied Catalysis B: Environmental, 2008, 82(3–4): 190–198
CrossRef Google scholar
[17]
Sakanishi K, Wu Z H, Matsumura A, Saito I, Hanaoka T, Minowa T, Tada M, Iwasaki T. Simultaneous removal of H2S and COS using activated carbons and their supported catalysts. Catalysis Today, 2005, 104(1): 94–100
CrossRef Google scholar
[18]
Sattler M L, Rosenberk R S. Removal of carbonyl sulfide using activated carbon adsorption. Journal of the Air & Waste Management Association, 2006, 56(2): 219–224
CrossRef Pubmed Google scholar
[19]
Wang X, Ning P, Shi Y, Jiang M. Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon. Journal of Hazardous Materials, 2009, 171(1–3): 588–593
CrossRef Pubmed Google scholar
[20]
Huang C C, Chen C H, Chu S M. Effect of moisture on H2S adsorption by copper impregnated activated carbon. Journal of Hazardous Materials, 2006, 136(3): 866–873
CrossRef Pubmed Google scholar
[21]
Li J, Li Z, Liu B, Xia Q B, Xi H X. Effect of relative humidity on adsorption of formaldehyde on modified activated carbons. Chinese Journal of Chemical Engineering, 2008, 16(6): 871–875
CrossRef Google scholar
[22]
Masuda J J, Fukuyama J J, Fujii S. Influence of concurrent substances on removal of hydrogen sulfide by activated carbon. Chemosphere, 1999, 39(10): 1611–1616
CrossRef Google scholar
[23]
Cui H, Turn S Q. Adsorption/desorption of dimethylsulfide on activated carbon modified with iron chloride. Applied Catalysis B: Environmental, 2009, 88(1–2): 25–31
CrossRef Google scholar
[24]
Yi H H, He D, Tang X L, Wang H Y, Zhao S Z, Li K. Effects of preparation conditions for active carbon-based catalyst on catalytic hydrolysis of carbon disulfide. Fuel, 2012, 97: 337–343
CrossRef Google scholar
[25]
Wang X Q, Qiu J, Ning P, Ren X G, Li Z Y, Yin Z F, Chen W, Liu W. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions. Journal of Hazardous Materials, 2012, 229–230: 128–136

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1137603, 51268021 and 51368026), the National High Technology Research and Development Program of China (No. 2012AA062504) and the Applied Basic Research Program of Yunnan (Nos. 2011FB027 and 2011FA010).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(171 KB)

Accesses

Citations

Detail

Sections
Recommended

/