Adsorption of benzene and toluene from waste gas using activated carbon activated by ZnCl2

Leila KARIMNEZHAD , Mohammad HAGHIGHI , Esmaeil FATEHIFAR

Front. Environ. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (6) : 835 -844.

PDF (1315KB)
Front. Environ. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (6) : 835 -844. DOI: 10.1007/s11783-014-0695-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Adsorption of benzene and toluene from waste gas using activated carbon activated by ZnCl2

Author information +
History +
PDF (1315KB)

Abstract

A series of activated carbons with high surface area were prepared from walnut shell using chemical activation with ZnCl2. In this research the carbonization stage was carried out at 500°C. The performance of the synthesized carbons evaluated in adsorption of benzene and toluene from waste gas. The influence of impregnation ratio on the characteristics of synthesized activated carbons as well as their adsorption capacity was investigated. The ratio of activation agent to walnut shell was selected in the range of 0.5–2.0 wt/wt. The synthesized activated carbons were characterized using XRD, SEM, BET and FTIR techniques. The highest activated carbon production yield was obtained at impregnation ratio of 1.5 wt/wt. The XRD analysis illustrated that peaks intensity decreased with increasing impregnation ratio showing that amorphous property of samples was increased. The SEM analysis revealed successful pore development in synthesized activated carbons obtained at high impregnation ratios. The surface area of the activated carbons increased with increasing impregnation ratio and its maximum value reached 2643 m2·g-1 at impregnation ratio of 2/1. FTIR analysis indicated that the relative amount of different acidic surface groups on synthesized carbons was a function of impregnation ratio. Experimental results for benzene and toluene adsorption showed a high potential of employing synthesized impregnated activated carbon for treatment of waste gas. Generally, the amount of VOC adsorbed on the surface was affected by physicochemical properties of synthesized activated carbons.

Keywords

Chemical activation / activated carbon / textural characterization / adsorption / benzene / toluene

Cite this article

Download citation ▾
Leila KARIMNEZHAD, Mohammad HAGHIGHI, Esmaeil FATEHIFAR. Adsorption of benzene and toluene from waste gas using activated carbon activated by ZnCl2. Front. Environ. Sci. Eng., 2014, 8(6): 835-844 DOI:10.1007/s11783-014-0695-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cai C, Geng F, Tie X, Yu Q, An J. Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmospheric Environment, 2010, 44(38): 5005–5014

[2]

Caselli M, de Gennaro G, Marzocca A, Trizio L, Tutino M. Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere, 2010, 81(3): 306–311

[3]

Lau A K H, Yuan Z, Yu J Z, Louie P K K. Source apportionment of ambient volatile organic compounds in Hong Kong. Science of the Total Environment, 2010, 408(19): 4138–4149

[4]

Yuan B, Shao M, Lu S, Wang B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmospheric Environment, 2010, 44(15): 1919–1926

[5]

Abbasi Z, Haghighi M, Fatehifar E, Rahemi N. Comparative synthesis and physicochemical characterization of CeO2 nanopowder via redox reaction, precipitation and Sol-Gel methods used for total oxidation of toluene. Asia-Pacific Journal of Chemical Engineering, 2012, 7(6): 868–876

[6]

Cheremisinoff N P, Rosenfeld P. Guidelines for Cleaner Production. Handbook of Pollution Prevention and Cleaner Production–Best Practices in The Petroleum Industry. Oxford: William Andrew Publishing, 2009, 179–225

[7]

Wang J, Zhang P, Qi J Q, Yao P J. Silicon-based micro-gas sensors for detecting formaldehyde. Sensors and Actuators. B, Chemical, 2009, 136(2): 399–404

[8]

Jamalzadeh Z, Haghighi M, Asgari N. Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO2 nanocatalysts used for total oxidation of xylene at low temperatures. Frontiers of Environmental Science & Engineering, 2013, 7(3): 365–381

[9]

Abbasi Z, Haghighi M, Fatehifar E, Saedy S. Synthesis and physicochemical characterization of nanostructured Pt/CeO2 catalyst used for total oxidation of toluene. International Journal of Chemical Reactor Engineering, 2011, 9(A45): 1–19

[10]

Abbasi Z, Fatehifar E, Soltan Mohammadzadeh J S, Haghighi M, Aghahoseini S. Selection of Optimum Method for Abatements of VOCs from Waste Gas Streams: Non-Destructive Methods. Iranian Journal of Chemical Engineering, 2010, 8(44): 30–40

[11]

Gratuito M K B, Panyathanmaporn T, Chumnanklang R A, Sirinuntawittaya N, Dutta A. Production of activated carbon from coconut shell: optimization using response surface methodology. Bioresource Technology, 2008, 99(11): 4887–4895

[12]

Ip A W M, Barford J P, McKay G. Production and comparison of high surface area bamboo derived active carbons. Bioresource Technology, 2008, 99(18): 8909–8916

[13]

Jaramillo J, Gómez-Serrano V, Álvarez P M. Enhanced adsorption of metal ions onto functionalized granular activated carbons prepared from cherry stones. Journal of Hazardous Materials, 2009, 161(2-3): 670–676

[14]

Morales-Torres S, Maldonado-Hódar F J, Pérez-Cadenas A F, Carrasco-Marín F. Design of low-temperature Pt-carbon combustion catalysts for VOC’s treatments. Journal of Hazardous Materials, 2010, 183(1-3): 814–822

[15]

Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005, 43(8): 1758–1767

[16]

Kim K J, Ahn H G. The adsorption and desorption characteristics of a binary component system of toluene and methylethylketone on activated carbon modified with phosphoric acid. Carbon, 2010, 48(8): 2198–2202

[17]

Lillo-Ródenas M A, Fletcher A J, Thomas K M, Cazorla-Amorós D, Linares-Solano A. Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration. Carbon, 2006, 44(8): 1455–1463

[18]

Tao Y, Wu C Y, Mazyck D W. Removal of methanol from pulp and paper mills using combined activated carbon adsorption and photocatalytic regeneration. Chemosphere, 2006, 65(1): 35–42

[19]

Pei J, Zhang J S. Determination of adsorption isotherm and diffusion coefficient of toluene on activated carbon at low concentrations. Building and Environment, 2012, 48(0): 66–76

[20]

Lemus J, Martin-Martinez M, Palomar J, Gomez-Sainero L, Gilarranz M A, Rodriguez J J. Removal of chlorinated organic volatile compounds by gas phase adsorption with activated carbon. Chemical Engineering Journal, 2012, 211–212(0): 246–254

[21]

Le Cloirec P. Adsorption onto Activated Carbon Fiber Cloth and Electrothermal Desorption of Volatile Organic Compound (VOCs): A Specific Review. Chinese Journal of Chemical Engineering, 2012, 20(3): 461–468

[22]

Li K, Zheng Z, Li Y. Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4 activation. Journal of Hazardous Materials, 2010, 181(1-3): 440–447

[23]

Reffas A, Bernardet V, David B, Reinert L, Lehocine M B, Dubois M, Batisse N, Duclaux L. Carbons prepared from coffee grounds by H3PO4 activation: characterization and adsorption of methylene blue and Nylosan Red N-2RBL. Journal of Hazardous Materials, 2010, 175(1-3): 779–788

[24]

Tham Y J, Latif P A, Abdullah A M, Shamala-Devi A, Taufiq-Yap Y H. Performances of toluene removal by activated carbon derived from durian shell. Bioresource Technology, 2011, 102(2): 724–728

[25]

Wen Q, Li C, Cai Z, Zhang W, Gao H, Chen L, Zeng G, Shu X, Zhao Y. Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde. Bioresource Technology, 2011, 102(2): 942–947

[26]

Kim K J, Kang C S, You Y J, Chung M C, Woo M W, Jeong W J, Park N C, Ahn H G. Adsorption-desorption characteristics of VOCs over impregnated activated carbons. Catalysis Today, 2006, 111(3–4): 223–228

[27]

Aygün A, Yenisoy-Karakas S, Duman I. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials, 2003, 66(2–3): 189–195

[28]

Tan I A W, Ahmad A L, Hameed B H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 2009, 164(2-3): 473–482

[29]

Hayashi J, Horikawa T, Takeda I, Muroyama K, Nasir Ani F, 0. Horikawa T, Takeda I, Muroyama K, Nasir Ani F. Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon, 2002, 40(13): 2381–2386

[30]

Toles C A, Marshall W E, Johns M M. Surface functional groups on acid-activated nutshell carbons. Carbon, 1999, 37(8): 1207–1214

[31]

Wang K, Li C, San H, Do D D. The importance of finite adsorption kinetics in the sorption of hydrocarbon gases onto a nutshell-derived activated carbon. Chemical Engineering Science, 2007, 62(23): 6836–6842

[32]

Klasson K T, Wartelle L H, Lima I M, Marshall W E, Akin D E. Activated carbons from flax shive and cotton gin waste as environmental adsorbents for the chlorinated hydrocarbon trichloroethylene. Bioresource Technology, 2009, 100(21): 5045–5050

[33]

Bansode R R, Losso J N, Marshall W E, Rao R M, Portier R J. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater. Bioresource Technology, 2004, 94(2): 129–135

[34]

Guo Y, Rockstraw D A. Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation. Bioresource Technology, 2007, 98(8): 1513–1521

[35]

Martínez M L, Torres M M, Guzmán C A, Maestri D M. Preparation and characteristics of activated carbon from olive stones and walnut shells. Industrial Crops and Products, 2006, 23(1): 23–28

[36]

Schröder E, Thomauske K, Weber C, Hornung A, Tumiatti V. Experiments on the generation of activated carbon from biomass. Journal of Analytical and Applied Pyrolysis, 2007, 79(1–2): 106–111

[37]

Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production–A review. Renewable & Sustainable Energy Reviews, 2007, 11(9): 1966–2005

[38]

Adinata D, Wan Daud W M A, Aroua M K. Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresource Technology, 2007, 98(1): 145–149

[39]

Deng H, Li G, Yang H, Tang J, Tang J. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chemical Engineering Journal, 2010, 163(3): 373–381

[40]

Mohamed A R, Mohammadi M, Darzi G N. Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renewable & Sustainable Energy Reviews, 2010, 14(6): 1591–1599

[41]

Uçar S, Erdem M, Tay T, Karagöz S. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Applied Surface Science, 2009, 255(21): 8890–8896

[42]

Yorgun S, Vural N, Demiral H. Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous and Mesoporous Materials, 2009, 122(1–3): 189–194

[43]

Wang T, Tan S, Liang C. Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon, 2009, 47(7): 1880–1883

[44]

Lillo-Ródenas M A, Carratalá-Abril J, Cazorla-Amorós D, Linares-Solano A. Usefulness of chemically activated anthracite for the abatement of VOC at low concentrations. Fuel Processing Technology, 2002, 77–78: 331–336

[45]

Yue Z, Mangun C L, Economy J. Preparation of fibrous porous materials by chemical activation: 1. ZnCl2 activation of polymer-coated fibers. Carbon, 2002, 40(8): 1181–1191

[46]

Yue Z, Economy J, Mangun C L. Preparation of fibrous porous materials by chemical activation 2. H3PO4 activation of polymer coated fibers. Carbon, 2003, 41(9): 1809–1817

[47]

Treviño-Cordero H, Juárez-Aguilar L G, Mendoza-Castillo D I, Hernández-Montoya V, Bonilla-Petriciolet A, Montes-Morán M A. Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water. Industrial Crops and Products, 2013, 42(0): 315–323

[48]

Peng C, Yan X, Wang R, Lang J, Ou Y, Xue Q. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochimica Acta, 2013, 87(0): 401–408

[49]

Qian Q, Machida M, Tatsumoto H. Preparation of activated carbons from cattle-manure compost by zinc chloride activation. Bioresource Technology, 2007, 98(2): 353–360

[50]

Lin Q, Jiang Y, Geng J, Qian Y. Removal of organic impurities with activated carbons for ultra-pure hydrogen peroxide preparation. Chemical Engineering Journal, 2008, 139(2): 264–271

[51]

Sun Y, Yue Q, Gao B, Huang L, Xu X, Li Q. Comparative study on characterization and adsorption properties of activated carbons with H3PO4 and H4P2O7 activation employing Cyperus alternifolius as precursor. Chemical Engineering Journal, 2012, 181–182(0): 790–797

[52]

Prahas D, Kartika Y, Indraswati N, Ismadji S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal, 2008, 140(1–3): 32–42

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1315KB)

4732

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/