Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation

Yuebing SUN , Dan ZHAO , Yingming XU , Lin WANG , Xuefeng LIANG , Yue SHEN

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 85 -92.

PDF (275KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 85 -92. DOI: 10.1007/s11783-014-0689-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation

Author information +
History +
PDF (275KB)

Abstract

Stabilization in the remediation of heavy metal contaminated soils has been gaining prominence because of its cost-effectiveness and rapid implementation. In this study, microbial properties such as microbial community and enzyme activities, chemical properties such as soil pH and metal fraction, and heavy metal accumulation in spinach (Spinacia oleracea) were considered in assessing stabilization remediation effectiveness using sepiolite. Results showed that soil pH values increased with rising sepiolite concentration. Sequential extraction results indicated that the addition of sepiolite converted significant amounts of exchangeable fraction of Cd and Pb into residual form. Treatments of sepiolite were observed to reduce Cd and Pb translocation from the soil to the roots and shoots of spinach. Concentrations of Cd and Pb exhibited 12.6%–51.0% and 11.5%–46.0% reduction for the roots, respectively, and 0.9%–46.2% and 43.0%–65.8% reduction for the shoots, respectively, compared with the control group. Increase in fungi and actinomycete counts, as well as in catalase activities, indicated that soil metabolic recovery occurred after sepiolite treatments.

Keywords

stabilization remediation / heavy metals / sepiolite / soil quality / spinach (Spinacia oleracea)

Cite this article

Download citation ▾
Yuebing SUN, Dan ZHAO, Yingming XU, Lin WANG, Xuefeng LIANG, Yue SHEN. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation. Front. Environ. Sci. Eng., 2016, 10(1): 85-92 DOI:10.1007/s11783-014-0689-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Doğan MAlkan MDemirbaş ÖÖzdemir YÖzmetin C. Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions. Chemical Engineering Journal2006124(1–3): 89–101

[2]

Akçay M. FT-IR spectroscopic investigation of the adsorption pyridine on the raw sepiolite and Fe-pillared sepiolite from anatolia. Journal of Molecular Structure2004694(1–3): 21–26

[3]

Tekin NDinçer ADemirbaş ÖAlkan M. Adsorption of cationic polyacrylamide onto sepiolite. Journal of Hazardous Materials2006134(1–3): 211–219

[4]

Eren EGumus H. Characterization of the structural properties and Pb(II) adsorption behavior of iron oxide coated sepiolite. Desalination2011273(2–3): 276–284

[5]

Shirvani MShariatmadari HKalbasi MNourbakhsh FNajafi B. Sorption of cadmium on palygorskite, sepiolite and calcite: Equilibria and organic ligand affected kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects2006287(1–3): 182–190

[6]

Doğan MTurhan YAlkan MNamli HTuran PDemirbaş Ö. Functionalized sepiolite for heavy metal ions adsorption. Desalination2008230(1–3): 248–268

[7]

Kocaoba S. Adsorption of Cd(II), Cr(III) and Mn(II) on natural sepiolite. Desalination2009244(1–3): 24–30

[8]

Liang X FXu Y MSun G HWang LSun Y BSun YQin X. Preparation and characterization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium. Chemical Engineering Journal2011174(1): 436–444

[9]

Lin D SLiu YXu Y MZhou Q XSun G H. Effects of sepiolite on the immobilization of cadmium and zinc in soil. Acta Scientiarum Naturalium Universitatis Pekinensis201046(3): 346–350 (in Chinese)

[10]

Liang X FXu Y MWang LSun G HQin XSun Y. In-situ immobilization of cadmium and lead in a contaminated agricultural field by adding natural clays combined with phosphate fertilizer. Acta Scientiae Circumstantiae201131(5): 1011–1018 (in Chinese)

[11]

Sun Y BSun G HXu Y MWang LLiang X FLin D SHu F Z. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil. Environmental Science and Pollution Research International201320(5): 3290–3299

[12]

Kumpiene JLagerkvist AMaurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management (New York, N.Y.)200828(1): 215–225

[13]

Zhou Q XSong Y F. Principles and Methods of Contaminated Soil Remediation. Beijing: Science Press, 2004 (in Chinese)

[14]

Kumpiene JOre SRenella GMench MLagerkvist AMaurice C. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environmental Pollution2006144(1): 62–69

[15]

Wang Q YZhou D MCang L. Microbial and enzyme properties of apple orchard soil as affected by long-term application of copper fungicide. Soil Biology & Biochemistry200941(7): 1504–1509

[16]

Kandeler ELuxhøi JTscherko DMagid J. Xylanase, invertase and protease at the soil-litter interface of a loamy sand. Soil Biology & Biochemistry199931(8): 1171–1179

[17]

Tessier ACampell P G CBisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry197951(7): 844–851

[18]

Shen G QCao L KLu Y THong J B. Influence of phenanthrene on cadmium toxicity to soil enzymes and microbial growth. Environmental Science and Pollution Research International200512(5): 259–263

[19]

Tabatabai M A. Soil enzymes. In: Weaver R WAngle J SBottomley P S, eds. Methods of Soil Analysis. Part II: Microbiological and Biochemical Properties. Madison: Soil Society of America, 1994

[20]

Stępniewska ZWolińska AZiomek J. Response of soil catalase activity to chromium contamination. Journal of Environmental Sciences-China200921(8): 1142–1147

[21]

Kandeler EKampichler CHorak O. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils199623(3): 299–306

[22]

Malandrino MAbollino OBuoso SGiacomino ALa Gioia CMentasti E. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere201182(2): 169–178

[23]

Sun Y BXu Y MWang LLin D SLiang X F. Assessment of sepiolite for immobilization of cadmium-contaminated soils. Geoderma2013193–194: 149–155

[24]

Liu R QZhao D Y. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere200768(10): 1867–1876

[25]

Sun Y BSun G HXu Y MWang LLin D SLiang X FShi X. In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite. Journal of Environmental Sciences-China201224(10): 1799–1805

[26]

Ackzai A K KBazai Z A. Phytoaccumulation of heavy metals in spinach (Spinacea oleraceac L. irrigated with wastewater of Quetta City). Journal of the Chemical Society of Pakistan200628(5): 473–477

[27]

Chunilall VKindness AJonnalagadda S B. Heavy metal uptake by spinach leaves grown on contaminated soils with lead, mercury, cadmium, and nickel. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes200439(3): 473–481

[28]

Sun Y BZhou Q XAn JLiu W TLiu R. Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma2009150(1–2): 106–112

[29]

Zhu Y GChen S BYang J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environment International200430(3): 351–356

[30]

Chen S BXu M GMa Y BYang J C. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicology and Environmental Safety200767(2): 278–285

[31]

de Mora A POrtega-Calvo J JCabrera FMadejón E. Changes in enzyme activities and microbial biomass after “in situ” remediation of a heavy metal-contaminated soil. Applied Soil Ecology200528(2): 125–137

[32]

Lee J JPark R DKim Y WShim J HChae D HRim Y SSohn B KKim T HKim K Y. Effect of food waste compost on microbial population, soil enzyme activity and lettuce growth. Bioresource Technology200493(1): 21–28

[33]

Tao JGriffiths BZhang S JChen X YLiu M QHu FLi H X. Effects of earthworms on soil enzyme activity in an organic residue amended rice–wheat rotation agro-ecosystem. Applied Soil Ecology200942(3): 221–226

[34]

Garau GCastaldi PSantona LDeiana PMelis P. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma2007142(1–2): 47–57

[35]

Aciego Pietri J CBrookes P C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biology & Biochemistry200840(7): 1856–1862

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (275KB)

4047

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/