The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: a case study of Olympic Forest Park in Beijing

Xiaofeng ZHANG , Xu ZHANG , Guanghe LI

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (2) : 269 -278.

PDF (1845KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (2) : 269 -278. DOI: 10.1007/s11783-014-0672-y
RESEARCH ARTICLE
RESEARCH ARTICLE

The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: a case study of Olympic Forest Park in Beijing

Author information +
History +
PDF (1845KB)

Abstract

Soil moisture variability in natural landscapes has been widely studied; however, less attention has been paid to its variability in the urban landscapes with respect to the possible influence of texture stratification and irrigation management. Therefore, a case study was carried out in the Beijing Olympic Forest Park to continuously monitor the soil in three typical profiles from 26 April to 11 November 2010. The texture stratification significantly affected the vertical distribution of moisture in the non-irrigated profile where moisture was mostly below field capacity. In the profile where irrigation was sufficient to maintain moisture above field capacity, gravity flow led to increased moisture with depth and thus eliminated the influence of texture. In the non-irrigated sites, the upper layer (above 80 cm) exhibited long-term moisture persistence with the time scale approximating the average rainfall interval. However, a coarse-textured layer weakened the influence of rainfall, and a fine-textured layer weakened the influence of evapotranspiration, both of which resulted in random noise-like moisture series in the deeper layers. At the irrigated site, frequent irrigation neutralized the influence of evapotranspiration in the upper layer (above 60 cm) and overshadowed the influence of rainfall in the deeper layer. As a result, the moisture level in the upper layer also behaved as a random noise-like series; whereas due to deep transpiration, the moisture of the deep layer had a persistence time-scale longer than a month, consistent with characteristic time-scales found for deep transpiration.

Keywords

moisture vertical distribution / moisture temporal variation / texture stratification / irrigation / meteorological forcing / urban landscape

Cite this article

Download citation ▾
Xiaofeng ZHANG, Xu ZHANG, Guanghe LI. The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: a case study of Olympic Forest Park in Beijing. Front. Environ. Sci. Eng., 2015, 9(2): 269-278 DOI:10.1007/s11783-014-0672-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Famiglietti J, Rudnicki J, Rodell M. Variability in surface soil moisture content along a hillslope transect: Rattlesnake Hill, Texas. Journal of Hydrology (Amsterdam), 1998, 210(1–4): 259–281

[2]

Nyberg L. Spatial variability of water content in the covered catchment at Gardsjon, Sweden. Hydrological Processes, 1996, 10(1): 89–103

[3]

de Lannoy G J M, Verhoest N E C, Houser P R, Gish T J, Meirvenne M V. Spatial and temporal characteristics of soil moisture in an intensively monitored agricultural field (OPE3). Journal of Hydrology (Amsterdam), 2006, 331(3–4): 719–730

[4]

Hawley M E, Jackson T J, McCuen R H. Surface soil moisture variation on small agricultural watersheds. Journal of Hydrology (Amsterdam), 1983, 62(1–4): 179–200

[5]

Arora V K, Bore G J. The temporal variability of soil moisture and surface hydrological quantities in a climate model. Journal of Climate, 2006, 19(22): 5875–5888

[6]

Craul P J. Urban Soil in Landscape Design. New York: John Wiley & Sons, 1992

[7]

Scheyer J M, Hipple K W. Urban Soil Primer. United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska, 2005

[8]

Tenenbaum D E, Band L E, Kenworthy S T, Tague C L. Analysis of soil moisture patterns in forested and suburban catchments in Baltimore, Maryland, using high-resolution photogrammetric and LIDAR digital elevation datasets. Hydrological Processes, 2006, 20(2): 219–240

[9]

Huang J L, Tu Z S, Du P F, Li Q S. L J. Analysis of rainfall runoff characteristics from a subtropical urban lawn catchment in South-east China. Frontiers of Environmental Science & Engineering in China, 2010, 6(4): 531–539

[10]

Pickett S T A, Cadenasso M L, Grove J M, Boone C G, Groffman P M, Irwin E, Kaushal S S, Marshall V, McGrath B P, Nilon C H, Pouyat R V, Szlavecz K, Troy A, Warren P. Urban ecological systems: scientific foundations and a decade of progress. Journal of Environmental Management, 2011, 92(3): 331–362

[11]

Hydrogeological investigation report for the proposed construction site of the Beijing Olympic Forest Park. Project No. 2003S037. Beijing Geotechnical Institute, 2003 (in Chinese)

[12]

Walter I A, Allen R G, Elliott R. The ASCE standardized reference evapotranspiration equation. Rep. Task Com. on Standardized Reference Evapotranspiration , EWRI- American Society of Civil Engineers, Reston, VA,USA, 2002

[13]

Wu S F, Wu P T, Feng H, Merkley G P. Effects of alfalfa coverage on runoff, erosion and hydraulic characteristics of overland flow on loess slope plots. Frontiers of Environmental Science & Engineering in China, 2011, 5(1): 76–83

[14]

Saxton K E, Rawls W J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 2006, 70(5): 1569–1578

[15]

Jenkins G M, Watts D G. Spectral Analysis and Its Applications. Holden-day Series in Time Series Analysis. London: Holden-Day, 1968

[16]

Reynolds S G. The gravimetric method of soil moisture determination, III: an examination of factors influencing soil moisture variability. Journal of Hydrology (Amsterdam), 1970, 11(3): 288–300

[17]

Robinson M, Dean T. Measurement of near surface soil water content using a capacitance probe. Hydrological Processes, 1993, 7(1): 77–86

[18]

Zhang J Y, Wang W C, Wei J F. Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. Journal of Geophysical Research, 2008, 113, D17119

[19]

Amenu G G, Kumar P, Liang X. Interannual variability of deep-layer hydrologic memory and mechanisms of its influence on surface energy fluxes. Journal of Climate, 2005, 18(23): 5024–5045

[20]

Wu W, Dickinson R E. Time scales of layered soil moisture memory in the context of land–atmosphere interaction. Journal of Climate, 2004, 17(14): 2752–2764

[21]

Dickinson R E, Wang G L, Zeng X B, Zeng Q C. How does the partitioning of evapotranspiration and runoff between different processes affect the variability and predictability of soil moisture and precipitation? Advances in Atmospheric Sciences, 2003, 20(3): 475–478

[22]

Savenjie H G H. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrological Processes, 2004, 18(8): 1507–1511

[23]

Entekhabi D, Rodriguez-Iturbe I, Bras R L. Variability in large-scale water balance with land surface-atmosphere interaction. Journal of Climate, 1992, 5(8): 798–813

[24]

Entekhabi D, Rodriguez-Iturbe I. Analytical framework for the characterization of the space-time variability of soil moisture. Advances in Water Resources, 1994, 17(1–2): 35–45

[25]

Wu W, Geller M A, Dickinson R E. Soil moisture profile variability in response to long-term precipitation. Journal of Hydrometeorology, 2002, 3: 604–613

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1845KB)

4925

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/