An enhanced environmental multimedia modeling system based on fuzzy-set approach: II. Model validation and application

Rongrong ZHANG, Chesheng ZHAN, Xiaomeng SONG, Baolin LIU

PDF(567 KB)
PDF(567 KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 1025-1035. DOI: 10.1007/s11783-014-0655-z
RESEARCH ARTICLE
RESEARCH ARTICLE

An enhanced environmental multimedia modeling system based on fuzzy-set approach: II. Model validation and application

Author information +
History +

Abstract

Part I of this study develops an enhanced environmental multimedia modeling system (EMMS) based on fuzzy-set approach. Once the model development is complete, the composite module and the entire modeling system need to be tested and validated to ensure that the model can simulate natural phenomena with reasonable and reliable accuracy. The developed EMMS is first tested in a complete case study. And then verification results are conducted to compare with extensively researched literature data. In the third step, the data from an experimental landfill site is used for a pilot-scale validation. The comparisons between EMMS outputs and the literature data indicate that the EMMS can perform accurate modeling simulation. The modules of EMMS could support the entire environmental multimedia modeling system. Further field-scale validation is finished. The results are satisfactory. Most of the modeling yields closely match the monitoring data collected from sites. In addition, with the aid of fuzzy-set approach, EMMS can be a reliable and powerful tool to address the complex environmental multimedia pollution problems and provide an extensive support for decision makers in managing the contaminated environmental systems.

Keywords

environmental multimedia modelling system / fuzzy-set approach / application / model validation / uncertainty analysis

Cite this article

Download citation ▾
Rongrong ZHANG, Chesheng ZHAN, Xiaomeng SONG, Baolin LIU. An enhanced environmental multimedia modeling system based on fuzzy-set approach: II. Model validation and application. Front. Environ. Sci. Eng., 2015, 9(6): 1025‒1035 https://doi.org/10.1007/s11783-014-0655-z

References

[1]
Coulibaly L, Labib M E, Hazen R. A GIS-based multimedia watershed model: development and application. Chemosphere, 2004, 55(7): 1067–1080
CrossRef Pubmed Google scholar
[2]
Yuan J. Development of an extended environmental multimedia modelling system (EEMMS). Dissertation for the Doctoral Degree. Montreal: Concordia University, 2009
[3]
Zhang R R, Zhan C S, He Z P, Song X M. Review of environmental multimedia models. Environmental Forensics, 2012, 13(3): 216–224
CrossRef Google scholar
[4]
McKone T E, Enoch K G. CalTOX, a Multimedia Toal Exposure Model Spreadsheet User’s Guide Version 4.0. Berkeley: Lawrence Berkeley National Laboratory, 2002
[5]
McDonald J P, Gelston G M. Commentary on fate and exposure models: Description of the multimedia environmental pollutant assessment system (MEPAS, Version 3.2), with application to a hypothetical soil contamination scenario. Journal of Soil Contaminant, 1998, 7(3): 283–300
CrossRef Google scholar
[6]
Chen Y C, Ma H W. Model comparison for risk assessment: a case study of contaminated groundwater. Chemosphere, 2006, 63(5): 751–761
CrossRef Pubmed Google scholar
[7]
USEPA (U.S. Environmental Protection Agency). Methodology for Estimating Multimedia Exposures to Soil Contamination (MMSOIL). Washington, D C: Office of Health and Environmental Assessment, Exposure Assessment Group, 1988
[8]
Cohen Y, Cooter E. Multimedia environmental distribution of Toxics (Mend-Tox) I: Hybrid compartment-spatial modelling framework. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2002, 6(2): 70–86
CrossRef Google scholar
[9]
Cohen Y, Cooter E. Multimedia environmental distribution of Toxics (Mend-Tox) II: Software implementation and case studies. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2002, 6(2): 87–101
CrossRef Google scholar
[10]
Chen Z, Yuan J. An extended environmental multimedia modeling system (EEMMS) for landfill case studies. Environmental Forensics, 2009, 10(4): 336–346
CrossRef Google scholar
[11]
Yuan J, Elektorowicz M, Chen Z. Improved environmental multimedia modeling and its sensitivity analysis. Water Science & Technology, 2011, 63(10): 2155–2163
CrossRef Pubmed Google scholar
[12]
Zhan C S, Zhang R R, Song X M. An enhanced environmental multimedia modelling system based on fuzzy-set approach: I. Theoretical framework and model test. Frontiers of Environmental Science & Engineering, 2014, doi: 10.1007/s11783-013-0609-x
[13]
Dubois D, Prade H. Fuzzy Sets and Systems. New York: Academic Press, 1988
[14]
Zimmermann H J. Fuzzy Set Theory and its Applications. London: Kluwer Academic Publishers, 1992
[15]
Beer M. Uncertain structural design based on nonlinear fuzzy analysis. ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2004, 84(10–11): 740–753
CrossRef Google scholar
[16]
Lin J S, Hildemann L M. A nonsteady-state analytical model to predict gaseous emissions of volatile organic compounds from landfills. Journal of Hazardous Materials, 1995, 40(3): 271–295
CrossRef Google scholar
[17]
Labieniec P A, Dzombak D A, Siegrist R L. SoilRisk: risk assessment model for organic contaminants in soil. Journal of Environmental Engineering, 1996, 122(5): 388–398
CrossRef Google scholar
[18]
Labieniec P A, Dzombak D A, Siegrist R L. Risk variability due to uniform soil remediation goals. Journal of Environmental Engineering, 1996, 122(7): 612–621
CrossRef Google scholar
[19]
Jury W A, Spencer W F, Farmer W J. Behavior assessment model for trace organics in soil: I. model description. Journal of Environmental Quality, 1983, 12(4): 558–564
CrossRef Google scholar
[20]
Jury W A, Russo D, Strelie G, El Abd H. Evaluation of volatilization by organic chemicals residing below the soil surface. Water Resources Research, 1990, 26(1): 13–20
CrossRef Google scholar
[21]
Labieniec P A. The risk implications of approaches for setting soil remediation goals at hazardous waste contaminated site. Dissertation for the Doctoral Degree. Pittsburgh: Carnegie Mellon University, 1994
[22]
Carnahan C L, Remer J S. Nonequilibrium and Equilibrium sorption with a linear sorption isotherm during mass transport through an infinite porous medium: some analytical solution. Journal of Hydrology (Amsterdam), 1984, 73(3–4): 227–258
CrossRef Google scholar
[23]
Domenico P A. An analytical model for multidimentional transport of a decaying contaminant species. Journal of Hydrology (Amsterdam), 1987, 91(1–2): 49–58
CrossRef Google scholar
[24]
Rickabaugh J F. Evaluation of trace VOC emissions from sanitary landfills. Dissertation for the Doctoral Degree. Cincinnati: University of Cincinnati, 1990
[25]
Dillon M M, Lee G. Trail Road and Nepean Landfill Sites Final Report for the 2002 Monitoring and Operation Program. Ottawa, Environment and Transportation Department Solid Waste Division, 2002
[26]
USEPA. Three Multimedia Models Used at Hazardous and Radioactive Waste Sites. Washington, D C: U.S. Environmental Protection Agency, 1996
[27]
Zhang R R. Development of a fuzzy-set enhanced environmental multimedia modelling system. Dissertation for the Master Degree. Quebec: Concordia University, 2006

Acknowledgements

This work was partially supported by the National Grand Science and Technology Special Project of Water Pollution Control and Improvement (No. 2014ZX07204-006) and the National Natural Science Foundation of China (Garnt Nos. 41371043 and 41106108).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(567 KB)

Accesses

Citations

Detail

Sections
Recommended

/